Skip to main content
Log in

Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this work, 16 strains with promising probiotic characteristics belonging to the Lactobacillus pentosus (13) and Lactobacillus plantarum (3) species and isolated from table olive biofilms were tested for adherence to cell lines and to solvents, immunomodulatory, and anti-proliferative properties on epithelial human cellular lines. Most Lactobacillus strains were able to regulate the production of cytokines by stimulating the production of pro-inflammatory (IL-6) and anti-inflammatory (IL-10) interleukins on macrophages, and by suppressing the secretion of IL-8 on HT-29 TNF-α-induced model. Lactobacillus strains also showed anti-proliferative activity on the HT-29 cell line. No clear relation was found between adhesion to solvents and adhesion to HT-29 human cell line. Lactobacillus pentosus LPG1, which showed the best anti-inflammatory and immunomodulatory properties, was then tested in a dinitro-benzene sulfonic acid (DNBS)-induced chronic colitis murine model. As a measure of the inflammation, gut permeability and weight loss, as well as cytokine profiles, were determined. Lactobacillus pentosus LPG1 improved mice health as observed by a significant reduction of weight loss, gut permeability, and beneficial cytokine modulation. Macroscopic scores and tissue damage were also lower in mice administered with LPG1 with respect to the DNBS-treated group. These results showed that L. pentosus LPG1 isolated from plant could have potential as probiotic for use as an anti-inflammatory and immunomodulatory agent for patients with inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Di Cagno R, Coda R, De Angelis M, Gobbetti M (2013) Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol 33(1):1–10. https://doi.org/10.1016/j.fm.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Bonatsou S, Karamouza M, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Papadimitriou K, Tsakalidou E, Nychas GE, Panagou EΖ (2018) Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int. J. Food Microbiol 271:48–59. https://doi.org/10.1016/j.ijfoodmicro.2018.02.018

    Article  CAS  Google Scholar 

  3. Montoro BP, Benomar N, Lavilla Lerma L, Castillo Gutiérrez S, Gálvez A, Abriouel H (2016) Fermented Aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains. Front Microbiol 7:1583. https://doi.org/10.3389/fmicb.2016.01583

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peres CM, Hernandez-Mendonza A, Peres C, Malcata FX (2013) Table olives: a natural vehicle for health-promoting bacteria and bioactive compounds. In: Robinson A, Emerson D (eds) Functional foods: sources, biotechnology applications and health challenges. Nova Science Publishers, Hauppauge, pp 65–94

    Google Scholar 

  5. Porru C, Rodríguez-Gómez F, Benítez-Cabello A, Jiménez-Díaz R, Zara G, Budroni M, Mannazzu I, Arroyo-López FN (2018) Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol 69:33–42. https://doi.org/10.1016/j.fm.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  6. IOC (2019) World table olive figures. http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive-figures. Last updated: April 2019.

  7. Garrido-Fernández A, Fernández-Díez MJ, Adams RM (1997) Table Olives Production and Processing. Chapman & Hall, London

    Book  Google Scholar 

  8. Hurtado A, Requant C, Bordons A, Rozes N (2012) Lactic acid bacteria from fermented olives. Food Microbiol 31:1–8. https://doi.org/10.1016/j.fm.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  9. Peréz-Dıaz IM, Breidt F, Buescher RW, Arroyo-López FN, Jiménez-Dıaz R, Garrido-Fernández A, Bautista-Gallego J, Yoon SS, Johanningsmeire SD (2013) Fermented and acidified vegetables. Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 521–532. https://doi.org/10.2105/MBEF.0222.056

    Book  Google Scholar 

  10. Domínguez-Manzano J, Jiménez-Díaz R (2013) Suppression of bacteriocin production in mixed-species cultures of lactic acid bacteria. Food Control 30(2):474–479. https://doi.org/10.1016/j.foodcont.2012.09.014

    Article  CAS  Google Scholar 

  11. Jiménez-Díaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59(5):1416–1424

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin L (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50(1):135–142. https://doi.org/10.1016/j.foodres.2012.10.004

    Article  CAS  Google Scholar 

  13. Bevilacqua A, Altieri C, Corbo MR, Sinigaglia M, Ouoba LII (2010) Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures. J Food Sci 75(8):M536–M544. https://doi.org/10.1111/j.1750-3841.2010.01793.x

    Article  CAS  PubMed  Google Scholar 

  14. Grounta A, Doulgeraki AI, Nychas GJE, Panagou EZ (2016) Biofilm formation on Conservolea natural Black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture. Food Microbiol 56:35–44. https://doi.org/10.1016/j.fm.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez-Gómez F, Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Jiménez-Díaz R, Garrido-Fernández A, García-García P (2013) Table olive fermentation with multifunctional Lactobacillus pentosus strains. Food Control 34(1):96–105. https://doi.org/10.1016/j.foodcont.2013.04.010

    Article  CAS  Google Scholar 

  16. Arroyo-López FN, Bautista-Gallego J, Domínguez-Manzano J, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R (2012) Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol 32:295–301. https://doi.org/10.1016/j.fm.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Benítez-Cabello A, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN (2015) Evaluation and identification of poly-microbial biofilms on natural green Gordal table olives. Anton Leeuw Int J G 108(3):597–610. https://doi.org/10.1007/s10482-015-0515-2

    Article  CAS  Google Scholar 

  18. Domínguez-Manzano J, Olmo-Ruiz C, Bautista-Gallego J, Arroyo-López FN, Garrido-Fernández A, Jiménez-Díaz R (2012) Biofilm formation on abiotic and biotic surfaces during Spanish style green table olive fermentation. Int J Food Microbiol 157:230–238. https://doi.org/10.1016/j.ijfoodmicro.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez-Gómez F, Romero-Gil V, Arroyo-López FN, Roldán-Reyes JC, Torres-Gallardo R, Bautista-Gallego J, Garcia-Garcia P, Garrido-Fernández A (2017) Assessing the challenges in the application of potential probiotic lactic acid bacteria in the large-scale fermentation of Spanish-style table olives. Front Microbiol 8:915. https://doi.org/10.3389/fmicb.2017.00915

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, Sato T, Habu S, Hachimura S, Kaminogawa S (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32(4):563–570. https://doi.org/10.1046/j.0954-7894.2002.01354.x

    Article  CAS  PubMed  Google Scholar 

  21. Fujimori S, Tatsuguchi A, Gudis K, Kishida T, Mitsui K, Ehara A, Kobayashi Y, Sekita Y, Seo T, Sakamoto C (2007) High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. J Gastroenterol Hepatol 22(8):1199–1204. https://doi.org/10.1111/j.1440-1746.2006.04535.x

    Article  PubMed  Google Scholar 

  22. Groeneveld PH, Kwappenberg KM, Langermans JA, Nibbering PH, Curtis L (1997) Relation between pro-and anti-inflammatory cytokines and the production of nitric oxide (NO) in severe sepsis. Cytokine 9(2):138–142. https://doi.org/10.1006/cyto.1996.0147

    Article  CAS  PubMed  Google Scholar 

  23. Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27. https://doi.org/10.1097/AIA.0b013e318034194e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517

    Article  PubMed  Google Scholar 

  25. Seksik P, Sokol H, Lepage P, Vasquez N, Manichanh C, Mangin I, Pochart P, Dore J, Marteau P (2006) The role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther 24:11–18. https://doi.org/10.1111/j.1365-2036.2006.03053.x

    Article  CAS  PubMed  Google Scholar 

  26. Benítez-Cabello A, Calero-Delgado B, Rodríguez-Gómez F, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN (2019) Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms. Front Microbiol 10(3):Art 836. https://doi.org/10.3389/fmicb.2019.00836

    Article  Google Scholar 

  27. Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS One 7(5):e38034. https://doi.org/10.1371/journal.pone.0038034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torres-Maravilla E, Lenoir M, Mayorga-Reyes L, Allain T, Sokol H, Langella P et al (2016) Identification of novel anti-inflammatory probiotic strains isolated from pulque. Appl Microbiol Biotechnol 100(1):385–396. https://doi.org/10.1007/s00253-015-7049-4

    Article  CAS  PubMed  Google Scholar 

  29. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36(9-10):895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  30. Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, Le Goffic R, Courau S, Molimard P, Chatel JM, Langella P, Bermúdez-Humarán LG (2013) Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol 79(5):1491–1499. https://doi.org/10.1128/AEM.03075-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martín R, Chain F, Miquel S, Lu J, Gratadoux JJ, Sokol H, Verdu EF, Bercik P, Bernúdez-Humarán LG, Langella P (2014) The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 20(3):417–430. https://doi.org/10.1097/01.MIB.0000440815.76627.64

    Article  PubMed  Google Scholar 

  32. Qiu BS, Vallance BA, Blennerhassett PA, Collins SM (1999) The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5(10):1178

    Article  CAS  PubMed  Google Scholar 

  33. Martín R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Vassilia HK, Bercik P, Verdu EF, Langella P, Bermúdez-Humarán LG (2015) Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 15(1):67. https://doi.org/10.1186/s12866-015-0400-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guantario B, Zinno P, Schifano E, Roselli M, Perozzi G, Palleschi C, Uccelletti D, Devirgiliis C (2018) In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives. Front Microbiol 9:595. https://doi.org/10.3389/fmicb.2018.00595

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grounta A, Harazinis P, Mylonakis E, Nychas GJE, Panagou EZ (2016) Investigating the effect of different treatments with lactic acid bacteria on the fat of Listeria monocytogenes and Staphylococcus aureus infection in Galleria mellonella larvae. PlosOne 11(9):e0161263. https://doi.org/10.1371/journal.pone.0161263

    Article  CAS  Google Scholar 

  36. Havenaar R, Ten Brink B, Huis JH (1992) Selection of strains for probiotic use. In: Probiotics. Springer, Dordrecht, pp 209–224

    Chapter  Google Scholar 

  37. Xu H, Jeong HS, Lee HY, Ahn J (2009) Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett Appl Microbiol 49(4):434–442. https://doi.org/10.1111/j.1472-765X.2009.02684.x

    Article  CAS  PubMed  Google Scholar 

  38. Bellon-Fontaine MN, Rault J, Van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloid Surf B 7(1-2):47–53. https://doi.org/10.1016/0927-7765(96)01272-6

    Article  CAS  Google Scholar 

  39. Kos BVZE, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6):981–987. https://doi.org/10.1053/j.gastro.2004.01.063

    Article  CAS  PubMed  Google Scholar 

  40. Van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) The role of bacterial cell wall hydrophobicity in adhesion. J Appl Environ Microbiol 53(8):1893–1897

    Article  Google Scholar 

  41. Borecka-Melkusova S, Bujdakova H (2008) Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment. Can J Microbiol 54(9):718–724. https://doi.org/10.1139/W08-060

    Article  CAS  PubMed  Google Scholar 

  42. Bujdáková H, Didiášová M, Drahovská H, Černáková L (2013) Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sci 8(3):259–262. https://doi.org/10.2478/s11535-013-0136-y

    Article  CAS  Google Scholar 

  43. Cousin FJ, Jouan-Lanhouet S, Dimanche-Boitrel MT, Corcos L, Jan G (2012) Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One 7(3):e31892. https://doi.org/10.1371/journal.pone.0031892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jan GBAS, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9(2):179

    Article  CAS  PubMed  Google Scholar 

  45. Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H, Kohgo Y (2016) Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun 7:12365. https://doi.org/10.1038/ncomms12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hardy H, Harris J, Lyon E, Beal J, Foey A (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5(6):1869–1912. https://doi.org/10.3390/nu5061869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M (2011) Interleukin-6 in surgery, trauma, and critical care part II: clinical implications. J Intensive Care Med 26(2):73–87

    Article  PubMed  PubMed Central  Google Scholar 

  48. Niers LE, Timmerman HM, Rijkers GT, van Bleek GM, van Uden NO, Knol EF, Kapsenberg ML, Kimpen JLL, Hoekstra MO (2005) Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 35(11):1481–1489. https://doi.org/10.1111/j.1365-2222.2005.02375.x

    Article  CAS  PubMed  Google Scholar 

  49. Perez-Cano FJ, Dong H, Yaqoob P (2010) In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 215(12):996–1004. https://doi.org/10.1016/j.imbio.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  50. Pradhan B, Guha D, Ray P, Das D, Aich P (2016) Comparative analysis of the effects of two probiotic bacterial strains on metabolism and innate immunity in the RAW 264.7 murine macrophage cell line. Probiotics Antimicro 8(2):73–84. https://doi.org/10.1007/s12602-016-9211-4

    Article  CAS  Google Scholar 

  51. Russo RC, Garcia CC, Teixeira MM, Amaral FA (2014) The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 10(5):593–619. https://doi.org/10.1586/1744666X.2014.894886

    Article  CAS  PubMed  Google Scholar 

  52. Garcia Vilela E, De Lourdes De Abreu FM, Oswaldo Da Gama Torres H, Guerra Pinto A, Carolina Carneiro Aguirre A, Paiva Martins F, Andrade Goulart EM, Sales Da Cunha A (2008) Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol 43(7):842–848. https://doi.org/10.1080/00365520801943354

    Article  CAS  PubMed  Google Scholar 

  53. Stephani J, Radulovic K, Niess JH (2011) Gut microbiota, probiotics and inflammatory bowel disease. Arch Immunol Ther Exp 59(3):161–177. https://doi.org/10.1007/s00005-011-0122-5

    Article  Google Scholar 

  54. Caballero-Franco C, Keller K, De Simone C, Chadee K (2007) The VSL# 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol-Gastr L 292:315–322. https://doi.org/10.1371/journal.pone.0031892

    Article  CAS  Google Scholar 

  55. Mack DR, Ahrné S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767. https://doi.org/10.1053/j.gastro.2011.02.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Antonio Benítez Cabello wishes to express his gratitude to the Commensal and Probiotics-Host Interactions team, from Micalis Institute (INRA), for their unconditional help in the development of this work.

Funding

The research has received funding from the Spanish Government (Project OliFilm AGL-2013-48300-R: www.olifilm.science.com.es). Antonio Benítez Cabello received predoctoral grant from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Noé Arroyo-López.

Ethics declarations

This article contains studies with animals performed according to their welfare.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez-Cabello, A., Torres-Maravilla, E., Bermúdez-Humarán, L. et al. Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms. Probiotics & Antimicro. Prot. 12, 1071–1082 (2020). https://doi.org/10.1007/s12602-019-09604-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09604-y

Keywords

Navigation