On the Effects of Acid Pre-treatment on the Elemental and Isotopic Composition of Lightly- and Heavily-calcified Marine Invertebrates

Abstract

Carbonate removal using acids is a common practice in ecological studies. The effects, however, of acid pre-treatment on the elemental and isotopic composition of marine invertebrates as well as how these effects vary according to species’ carbonate content is little known. We examined the effects of acid pre-treatment on the elemental (%C, %N, C:N ratio (%C:%N)) and isotopic composition (δ13C, δ15N) of 28 lightly- and heavily-calcified species from Cnidaria, Mollusca, Arthropoda, Bryozoa, Echinodermata and Chordata. The present study showed that acid pre-treatment modified the elemental and isotopic composition of lightly- and heavily-calcified marine invertebrates. The shifts were clearly seen as a decrease in the %C and δ13C of heavily-calcified species while we did not detect a clear pattern for %N and δ15N (in both lightly- and heavily calcified species). Apart from carbonates, acid pre-treatment caused also the loss of organic compounds, thus confounding the interpretation of carbonate proxy (CP) -a widely used proxy for carbonate content. We recommend the use of CP solely with heavily-calcified species. For the first time it was shown that the use of δ15N values from acidified samples can introduce substantial bias in our perception about the number of trophic levels, the distribution of species and distribution of biomass across the trophic levels in a community. We have uncovered and elucidated previously unknown aspects and highlighted the challenge posed when predicting shifts in elemental and isotopic composition of species following acid pre-treatment. The present findings should be considered in future studies using acid pre-treatment as they can contribute to the optimum use of samples while avoiding bias in the interpretation of findings.

References

  1. Bicknell AWJ, Campbell M, Knight ME, Bilton DT, Newton J, Votier SC (2011) Effects of formalin preservation on stable carbon and nitrogen isotope signatures in calanoid copepods: implications for the use of Continuous Plankton Recorder Survey samples in stable isotope analyses. Rapid Commun Mass Sp 25:1794–1800. doi:https://doi.org/10.1002/rcm.5049

    Article  Google Scholar 

  2. Bosley KL, Wainright SC (1999) Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals. Can J Fish Aquat Sci 56:2181–2185

    Article  Google Scholar 

  3. Brodie CR, Leng MJ, Casford JSL, Kendrick CP, Lloyd JM, Yongqiang Z, Bird MI (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83. doi:https://doi.org/10.1016/j.chemgeo.2011.01.007

    Article  Google Scholar 

  4. Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625. doi:https://doi.org/10.4319/lo.1995.40.3.0622

    Article  Google Scholar 

  5. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. P Natl A Sci USA 93:10844–10847

    Article  Google Scholar 

  6. Carabel S, Godinez-Dominguez E, Verisimo P, Fernandez L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336:254–261. doi:https://doi.org/10.1016/j.jembe.2006.06.001

    Article  Google Scholar 

  7. de Lecea AM, Cooper R, Omarjee A, Smit AJ (2011) The effects of preservation methods, dyes and acidification on the isotopic values (δ15N and δ13C) of two zooplankton species from the KwaZulu-Natal Bight, South Africa. Rapid Commun Mass Sp 25:1853–1861. doi:https://doi.org/10.1002/rcm.5051

    Article  Google Scholar 

  8. DeNiro JM, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45:341–351

    Article  Google Scholar 

  9. Demopoulos AWJ, Fry B, Smith CR (2007) Food web structure in exotic and native mangroves: a Hawaii-Puerto Rico comparison. Oecologia 153:675–686. doi:https://doi.org/10.1007/s00442-007-0751-x

    Article  Google Scholar 

  10. Divine LM, Iken K, Bluhm BA (2015) Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar Ecol-Prog Ser 531:15–32. doi:https://doi.org/10.3354/meps11340

    Article  Google Scholar 

  11. Edwards MS, Turner TF, Sharp ZD (2002) Short and long-term effects of fixation and preservation on stable isotope values (δ13C, δ15N, δ34S) of fluid-preserved museum specimens. Copeia 4:1106–1112

    Article  Google Scholar 

  12. Fanelli E, Cartes JE, papiol V, Rumolo P, Sprovieri M (2010) Effects of preservation on the δ13C and δ15N values of deep-sea macrofauna. J Exp Mar Biol Ecol 395:93–97. doi:https://doi.org/10.1016/j.jembe.2010.08.020

    Article  Google Scholar 

  13. Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML (1999) A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120:416–426. doi:https://doi.org/10.1007/s004420050874

    Article  Google Scholar 

  14. Feder HM, Iken K, Blanchard AL, Jewett SC, Schonberg S (2011) Benthic food web structure in the southeastern Chukchi Sea: an assessment using δ13C and δ15N analyses. Polar Biol 34:521–532. doi:https://doi.org/10.1007/s00300-010-0906-9

    Article  Google Scholar 

  15. Frost PC, Evans-White A, Finkel ZV, Jensen TC, Matzek V (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28. doi:https://doi.org/10.1111/j.0030-1299.2005.14049.x

    Article  Google Scholar 

  16. Frost PC, Stelzer RS, Lamberti GA, Elser JJ (2002) Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in Lentic and Lotic habitats. J N Am Benthol Soc 21:515–528

    Article  Google Scholar 

  17. Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific Bay. Estuar Coast Shelf S 30:239–260. doi:https://doi.org/10.1016/0272-7714(90)90050-2

    Article  Google Scholar 

  18. Gontikaki E, Mayor DJ, Narayanaswamy BE, Witte UFM (2011) Feeding strategies of deep-sea sub-Arctic macrofauna of the Faroe-Shetland Channel: combining natural stable isotopes and enrichment techniques. Deep-Sea Res Pt I 58:160–172. doi:https://doi.org/10.1016/j.dsr.2010.11.011

    Article  Google Scholar 

  19. González-Bergonzoni I, Vidal N, Wang B, Ning D, Liu Z, Jeppesen E, Meerhoff M (2015) General validation of formalin-preserved fish samples in food web studies using stable isotopes. Methods Ecol Evol 6:307–314. doi:https://doi.org/10.1111/2041-210X.12313

    Article  Google Scholar 

  20. Grall J, Le Loc’h F, Guyonnet B, Riera P (2006) Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J Exp Mar Biol Ecol 338:1–15. doi:https://doi.org/10.1016/j.jembe.2006.06.013

    Article  Google Scholar 

  21. Hunter WR, Levin LA, Kitazato H, Witte U (2012) Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments. Biogeosciences 9:993–1006. doi:https://doi.org/10.5194/bg-9-993-2012

    Article  Google Scholar 

  22. Iken K, Bluhm B, Dunton K (2010) Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Res Pt II 57:71–85. doi:https://doi.org/10.1016/j.dsr2.2009.08.007

    Article  Google Scholar 

  23. Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol-Prog Ser 287:251–253

    Article  Google Scholar 

  24. Jaschinski S, Hansen T, Sommer U (2008) Effects of acidification in multiple stable isotope analyses. Limnol Oceanogr-Meth 6:12–15. doi:https://doi.org/10.4319/lom.2008.6.12

    Article  Google Scholar 

  25. Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, Smith Jr KL, Witte U (2013) Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS One 8:e80510. doi:https://doi.org/10.1371/journal.pone.0080510

    Article  Google Scholar 

  26. Kazanidis G, Henry L-A, Roberts JM, Witte UFM (2016) Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs 35:193–208. doi:https://doi.org/10.1007/s00338-015-1355-2

    Article  Google Scholar 

  27. Kazanidis G, Witte UFM (2016) The trophic structure of Spongosorites coralliophaga-coral rubble communities at two northeast Atlantic cold water coral reefs. Mar Biol Res 12:932–947. doi:https://doi.org/10.1080/17451000.2016.1216569

    Article  Google Scholar 

  28. King P, Kennedy H, Newton PP, Jickells TD, Brand T, Calvert S, Cauwet G, Etcheber H, Head B, Khripounoff A, Manighetti B, Miquel JC (1998) Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Mar Chem 60:203–216. doi:https://doi.org/10.1016/S0304-4203(97)00106-0

    Article  Google Scholar 

  29. Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Sp 22:2955–2960. doi:https://doi.org/10.1002/rcm.3694

    Article  Google Scholar 

  30. Lau DC, Leung KMY, Dudgeon D (2012) Preservation effects on C/N ratios and stable isotope signatures of freshwater fishes and benthic macroinvertebrates. Limnol Oceanogr-Meth 10:75–89. doi:https://doi.org/10.4319/lom.2012.10.75

    Article  Google Scholar 

  31. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. doi:https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  Google Scholar 

  32. Liu B, Liu Y, Li Y, Wang H, Xu J (2013) An assessment of sample preservation methods for the determination of stable carbon and nitrogen isotope ratios in mollusks. Anal Lett 46:2620–2634. doi:https://doi.org/10.1080/00032719.2013.805415

    Article  Google Scholar 

  33. Lohse L, Kloosterhuis RT, de Stigter HC, Helder W, van Raaphorst W, van Weering TCE (2000) Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Mar Chem 69:193–201. doi:https://doi.org/10.1016/S0304-4203(99)00105-X

    Article  Google Scholar 

  34. Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:https://doi.org/10.1007/s00442-008-1052-8

    Article  Google Scholar 

  35. Mazumder D, Iles J, Kelleway J, Kobayashi T, Knowles L, Saintilan N, Hollins S (2010) Effect of acidification on elemental and isotopic compositions of sediment organic matter and macroinvertebrate muscle tissues in food web research. Rapid Commun Mass Sp 24:2938–2942. doi:https://doi.org/10.1002/rcm.4729

    Article  Google Scholar 

  36. McCutchan, JH, William ML, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi:https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  Google Scholar 

  37. Mill AC, Sweeting JC, Barnes C, Al-Habsi S, MacNeil AM (2008) Mass-spectrometer bias in stable isotope ecology. Limnol Oceanogr-Meth 6:34–39

    Article  Google Scholar 

  38. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relations between δ15N and animal age. Geochim Cosmochim Ac 48:1135–1140. doi:https://doi.org/10.1016/0016-7037(84)90204-7

    Article  Google Scholar 

  39. Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T (2007) Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res Pt I 54:1015–1023. doi:https://doi.org/10.1016/j.dsr.2007.03.005

    Article  Google Scholar 

  40. Ng JSS, Wai T-C, Williams GA (2007) The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar Chem 103:97–102. doi:https://doi.org/10.1016/j.marchem.2006.09.001

    Article  Google Scholar 

  41. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi:https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    Article  Google Scholar 

  42. Rennie MD, Ozersky T, Evans DO (2012) Effects of formalin preservation on invertebrate stable isotope values over decadal time scales. Can J Zoolog 90:1320–1327. doi:https://doi.org/10.1139/z2012-101

    Article  Google Scholar 

  43. Roberts JM, Shipboard Party (2013) Changing oceans expedition 2012. Heriot-Watt University, Edinburgh, RRS James Cook 073 Cruise Report, 224 p

    Google Scholar 

  44. Ruiz-Cooley RI, Garcia KY, Hetherington ED (2011) Effects of lipid removal and preservatives on carbon and nitrogen stable isotope ratios of squid tissues: implications for ecological studies. J Exp Mar Biol Ecol 407:101–107. doi:https://doi.org/10.1016/j.jembe.2011.07.002

    Article  Google Scholar 

  45. Sarakinos HC, Johnson ML, Vander Zanden MJ (2002) A synthesis of tissue preservation effects on carbon and nitrogen stable isotope signatures. Can J Zoolog 80:381–387

    Article  Google Scholar 

  46. Schlacher TA, Connolly RM (2014) Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis. Methods Ecol Evol 5:541–550. doi:https://doi.org/10.1111/2041-210X.12183

    Article  Google Scholar 

  47. Serrano S, Serrano L, Mateo MA, Colombini I, Chelazzi L, Gagnarli E, Fallaci M (2008) Acid washing effect on elemental and isotopic composition of whole beach arthropods: Implications for food web studies using stable isotopes. Acta Oecol 34:89–96. doi:https://doi.org/10.1016/j.actao.2008.04.002

    Article  Google Scholar 

  48. Sokolowski A, Szczepańska A, Richard P, Kędra M, Wolowicz M, Węslawski JM (2014) Trophic structure of the microbenthic community of Hornsund, Spitsbergen, based on the determination of stable carbon and nitrogen isotopic. Polar Biol 37:1247–1260. doi:https://doi.org/10.1007/s00300-014-1517-7

    Article  Google Scholar 

  49. Søreide JE, Tamelander T, Hop H, Hobson KA, Johansen I (2006) Sample preparation effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Mar Ecol-Prog Ser 328:17–28. doi:https://doi.org/10.3354/meps328017

    Article  Google Scholar 

  50. Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton, 382 p

    Google Scholar 

  51. Sweetman AK, Witte U (2008) Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar Ecol-Prog Ser 355:73–84. doi:https://doi.org/10.3354/meps07240

    Article  Google Scholar 

  52. Syväranta J, Vesala S, Rask M, Ruuhijärvi J, Jones RI (2008) Evaluating the utility of stable isotope analyses of archived freshwater sample materials 600:121–130. doi:https://doi.org/10.1007/s10750-007-9181-3

    Google Scholar 

  53. Tu KL, Blanchard AL, Iken K, Horstmann-Dehn L (2015) Small-scale spatial variability in benthic food webs in the northeastern Chukchi Sea. Mar Ecol-Prog Ser 528:19–37. doi:10.3354meps11216

    Article  Google Scholar 

  54. Vafeiadou A, Adao H, De Troch M, Moens T (2013) Sample acidification effects on carbon and nitrogen stable isotope ratios of macrofauna from a Zostera noltii bed. Mar Freshwater Res 64:741–745. doi:https://doi.org/10.1071/MF12169

    Article  Google Scholar 

  55. van Oevelen D, Duineveld G, Lavaleye M, Mienis F, Soetaert K, Heip CHR (2009) The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr 54:1829–1844. doi:https://doi.org/10.4319/lo.2009.54.6.1829

    Article  Google Scholar 

  56. Vander Zanden MJ, Fetzer WW (2007) Global patterns of aquatic food chain length. Oikos 116:1378–1388. doi:https://doi.org/10.1111/j.0030-1299.2007.16036.x

    Article  Google Scholar 

  57. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and ä15N and the trophic position of aquatic consumers. Ecology 80:1395–1404. doi:https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2

    Article  Google Scholar 

  58. Wolf N, Carleton SA, Martinez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26. doi:https://doi.org/10.1111/j.1365-2435.2009.01529.x

    Article  Google Scholar 

  59. Xu J, Zhang M, Xie P (2011) Sympatric variability of isotopic baselines influences modeling of fish trophic patterns. Limnology 12:107–115. doi:https://doi.org/10.1007/s10201-010-0327-z

    Article  Google Scholar 

  60. Yokoyama H, Sakami T, Ishihi Y (2009) Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariake Sound, southern Japan, determined by stable isotopes. Estuar Coast Shelf S 82:243–253. doi:https://doi.org/10.1016/j.ecss.2009.01.010

    Article  Google Scholar 

  61. Yokoyama H, Tamaki A, Harada K, Shimoda K, Koyama K, Ishihi Y (2005) Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar Ecol-Prog Ser 296:115–128. doi:https://doi.org/10.3354/meps29611

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to captains, crews and science parties of the RRS James Cook (JC073 Changing Oceans Expedition) and the CCGS Amundsen (2013 ArcticNet Expedition). Thanks also to the Holland-I ROV team (JC073 Changing Oceans Expedition). Thanks to Anni Makela (University of Aberdeen) and Cindy Grant (University of ISMER) for sampling of the megafauna. Also thanks to Dr Evina Gontikaki (University of Aberdeen) for her guidance on sample preparation for isotope analysis, Kenneth Cruickshank (University of Aberdeen) for analysis on sample elemental composition, Dr Joy Matthews, Sylvia Duncan and Emily Schick at UC Davis Stable Isotope Facility and Barry Thornton and Gillian Martin from the James Hutton Institute for their co-operation on sample stable isotope analysis. Funding for the JC073 cruise was provided by the Natural Environment Research Council (NERC) UK Ocean Acidification (UKOA) research programme’s Benthic Consortium project (NE/H017305/1 to J Murray Roberts). Funding for participation in the Arctic crusie with CCGS Amundsen was provided by NERC funded research project ArcDEEP (NE/J023094/1 to Ursula Witte). Funding for analytical costs and field work was provided by the Marine Alliance for Science and Technology for Scotland (MASTS) (Biodiversity Grant to Ursula Witte, 140 SF10003-10) and ArcDEEP (NERC grant NE/J023094/1). Georgios Kazanidis was funded by a MASTS PhD scholarship and S. Bourgeois by the NERC ArcDEEP project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georgios Kazanidis.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazanidis, G., Bourgeois, S. & Witte, U.F.M. On the Effects of Acid Pre-treatment on the Elemental and Isotopic Composition of Lightly- and Heavily-calcified Marine Invertebrates. Ocean Sci. J. 54, 257–270 (2019). https://doi.org/10.1007/s12601-019-0014-x

Download citation

Keywords

  • acid pre-treatment
  • carbonate content
  • elemental composition
  • stable isotopes
  • food web