Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Ocean Science Journal
  3. Article
On the Effects of Acid Pre-treatment on the Elemental and Isotopic Composition of Lightly- and Heavily-calcified Marine Invertebrates
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dimethylsulfoniopropionate concentration in coral reef invertebrates varies according to species assemblages

18 June 2020

Isis Guibert, Flavien Bourdreux, … Gael Lecellier

Trophic structure and potential carbon and nitrogen flow of a rhodolith bed at Santa Catalina Island inferred from stable isotopes

06 February 2020

Scott S. Gabara

Is there an indication of the origin of nutrient supply in different morphological structures of macrofauna at two different Brazilian southeastern sandy beaches? Comparison by C and N stable isotopes

11 September 2019

Tito C. M. Almeida, Pedro F. P. Rocha, … Claudemir M. Radetski

Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates

01 June 2018

Jeff C. Clements & Elizabeth S. Darrow

Tracing nitrate sources using the isotopic composition of skeletal-bound organic matter from the calcareous green algae Halimeda

03 November 2018

Dirk V. Erler, Luke Nothdurft, … Charly A. Moras

Environmental Controls on the Geochemistry of a Short-Lived Bivalve in Southeastern Australian Estuaries

26 November 2019

Briony K. Chamberlayne, Jonathan J. Tyler & Bronwyn M. Gillanders

Element banding and organic linings within chamber walls of two benthic foraminifera

05 March 2019

E. Geerken, L. J. de Nooijer, … G. J. Reichart

Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata

09 June 2020

Georgina M. Nicholson & Kendall D. Clements

Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2

01 October 2020

Ruigang Ma, Haizhang Yang, … Chuanlian Liu

Download PDF
  • Article
  • Open Access
  • Published: 26 June 2019

On the Effects of Acid Pre-treatment on the Elemental and Isotopic Composition of Lightly- and Heavily-calcified Marine Invertebrates

  • Georgios Kazanidis1,2,
  • Solveig Bourgeois1 &
  • Ursula F. M. Witte1 

Ocean Science Journal volume 54, pages 257–270 (2019)Cite this article

  • 457 Accesses

  • 1 Citations

  • Metrics details

Abstract

Carbonate removal using acids is a common practice in ecological studies. The effects, however, of acid pre-treatment on the elemental and isotopic composition of marine invertebrates as well as how these effects vary according to species’ carbonate content is little known. We examined the effects of acid pre-treatment on the elemental (%C, %N, C:N ratio (%C:%N)) and isotopic composition (δ13C, δ15N) of 28 lightly- and heavily-calcified species from Cnidaria, Mollusca, Arthropoda, Bryozoa, Echinodermata and Chordata. The present study showed that acid pre-treatment modified the elemental and isotopic composition of lightly- and heavily-calcified marine invertebrates. The shifts were clearly seen as a decrease in the %C and δ13C of heavily-calcified species while we did not detect a clear pattern for %N and δ15N (in both lightly- and heavily calcified species). Apart from carbonates, acid pre-treatment caused also the loss of organic compounds, thus confounding the interpretation of carbonate proxy (CP) -a widely used proxy for carbonate content. We recommend the use of CP solely with heavily-calcified species. For the first time it was shown that the use of δ15N values from acidified samples can introduce substantial bias in our perception about the number of trophic levels, the distribution of species and distribution of biomass across the trophic levels in a community. We have uncovered and elucidated previously unknown aspects and highlighted the challenge posed when predicting shifts in elemental and isotopic composition of species following acid pre-treatment. The present findings should be considered in future studies using acid pre-treatment as they can contribute to the optimum use of samples while avoiding bias in the interpretation of findings.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Bicknell AWJ, Campbell M, Knight ME, Bilton DT, Newton J, Votier SC (2011) Effects of formalin preservation on stable carbon and nitrogen isotope signatures in calanoid copepods: implications for the use of Continuous Plankton Recorder Survey samples in stable isotope analyses. Rapid Commun Mass Sp 25:1794–1800. doi:https://doi.org/10.1002/rcm.5049

    Article  Google Scholar 

  • Bosley KL, Wainright SC (1999) Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals. Can J Fish Aquat Sci 56:2181–2185

    Article  Google Scholar 

  • Brodie CR, Leng MJ, Casford JSL, Kendrick CP, Lloyd JM, Yongqiang Z, Bird MI (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83. doi:https://doi.org/10.1016/j.chemgeo.2011.01.007

    Article  Google Scholar 

  • Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625. doi:https://doi.org/10.4319/lo.1995.40.3.0622

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. P Natl A Sci USA 93:10844–10847

    Article  Google Scholar 

  • Carabel S, Godinez-Dominguez E, Verisimo P, Fernandez L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336:254–261. doi:https://doi.org/10.1016/j.jembe.2006.06.001

    Article  Google Scholar 

  • de Lecea AM, Cooper R, Omarjee A, Smit AJ (2011) The effects of preservation methods, dyes and acidification on the isotopic values (δ15N and δ13C) of two zooplankton species from the KwaZulu-Natal Bight, South Africa. Rapid Commun Mass Sp 25:1853–1861. doi:https://doi.org/10.1002/rcm.5051

    Article  Google Scholar 

  • DeNiro JM, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45:341–351

    Article  Google Scholar 

  • Demopoulos AWJ, Fry B, Smith CR (2007) Food web structure in exotic and native mangroves: a Hawaii-Puerto Rico comparison. Oecologia 153:675–686. doi:https://doi.org/10.1007/s00442-007-0751-x

    Article  Google Scholar 

  • Divine LM, Iken K, Bluhm BA (2015) Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar Ecol-Prog Ser 531:15–32. doi:https://doi.org/10.3354/meps11340

    Article  Google Scholar 

  • Edwards MS, Turner TF, Sharp ZD (2002) Short and long-term effects of fixation and preservation on stable isotope values (δ13C, δ15N, δ34S) of fluid-preserved museum specimens. Copeia 4:1106–1112

    Article  Google Scholar 

  • Fanelli E, Cartes JE, papiol V, Rumolo P, Sprovieri M (2010) Effects of preservation on the δ13C and δ15N values of deep-sea macrofauna. J Exp Mar Biol Ecol 395:93–97. doi:https://doi.org/10.1016/j.jembe.2010.08.020

    Article  Google Scholar 

  • Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML (1999) A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120:416–426. doi:https://doi.org/10.1007/s004420050874

    Article  Google Scholar 

  • Feder HM, Iken K, Blanchard AL, Jewett SC, Schonberg S (2011) Benthic food web structure in the southeastern Chukchi Sea: an assessment using δ13C and δ15N analyses. Polar Biol 34:521–532. doi:https://doi.org/10.1007/s00300-010-0906-9

    Article  Google Scholar 

  • Frost PC, Evans-White A, Finkel ZV, Jensen TC, Matzek V (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28. doi:https://doi.org/10.1111/j.0030-1299.2005.14049.x

    Article  Google Scholar 

  • Frost PC, Stelzer RS, Lamberti GA, Elser JJ (2002) Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in Lentic and Lotic habitats. J N Am Benthol Soc 21:515–528

    Article  Google Scholar 

  • Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific Bay. Estuar Coast Shelf S 30:239–260. doi:https://doi.org/10.1016/0272-7714(90)90050-2

    Article  Google Scholar 

  • Gontikaki E, Mayor DJ, Narayanaswamy BE, Witte UFM (2011) Feeding strategies of deep-sea sub-Arctic macrofauna of the Faroe-Shetland Channel: combining natural stable isotopes and enrichment techniques. Deep-Sea Res Pt I 58:160–172. doi:https://doi.org/10.1016/j.dsr.2010.11.011

    Article  Google Scholar 

  • González-Bergonzoni I, Vidal N, Wang B, Ning D, Liu Z, Jeppesen E, Meerhoff M (2015) General validation of formalin-preserved fish samples in food web studies using stable isotopes. Methods Ecol Evol 6:307–314. doi:https://doi.org/10.1111/2041-210X.12313

    Article  Google Scholar 

  • Grall J, Le Loc’h F, Guyonnet B, Riera P (2006) Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J Exp Mar Biol Ecol 338:1–15. doi:https://doi.org/10.1016/j.jembe.2006.06.013

    Article  Google Scholar 

  • Hunter WR, Levin LA, Kitazato H, Witte U (2012) Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments. Biogeosciences 9:993–1006. doi:https://doi.org/10.5194/bg-9-993-2012

    Article  Google Scholar 

  • Iken K, Bluhm B, Dunton K (2010) Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Res Pt II 57:71–85. doi:https://doi.org/10.1016/j.dsr2.2009.08.007

    Article  Google Scholar 

  • Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol-Prog Ser 287:251–253

    Article  Google Scholar 

  • Jaschinski S, Hansen T, Sommer U (2008) Effects of acidification in multiple stable isotope analyses. Limnol Oceanogr-Meth 6:12–15. doi:https://doi.org/10.4319/lom.2008.6.12

    Article  Google Scholar 

  • Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, Smith Jr KL, Witte U (2013) Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS One 8:e80510. doi:https://doi.org/10.1371/journal.pone.0080510

    Article  Google Scholar 

  • Kazanidis G, Henry L-A, Roberts JM, Witte UFM (2016) Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs 35:193–208. doi:https://doi.org/10.1007/s00338-015-1355-2

    Article  Google Scholar 

  • Kazanidis G, Witte UFM (2016) The trophic structure of Spongosorites coralliophaga-coral rubble communities at two northeast Atlantic cold water coral reefs. Mar Biol Res 12:932–947. doi:https://doi.org/10.1080/17451000.2016.1216569

    Article  Google Scholar 

  • King P, Kennedy H, Newton PP, Jickells TD, Brand T, Calvert S, Cauwet G, Etcheber H, Head B, Khripounoff A, Manighetti B, Miquel JC (1998) Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Mar Chem 60:203–216. doi:https://doi.org/10.1016/S0304-4203(97)00106-0

    Article  Google Scholar 

  • Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Sp 22:2955–2960. doi:https://doi.org/10.1002/rcm.3694

    Article  Google Scholar 

  • Lau DC, Leung KMY, Dudgeon D (2012) Preservation effects on C/N ratios and stable isotope signatures of freshwater fishes and benthic macroinvertebrates. Limnol Oceanogr-Meth 10:75–89. doi:https://doi.org/10.4319/lom.2012.10.75

    Article  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. doi:https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  Google Scholar 

  • Liu B, Liu Y, Li Y, Wang H, Xu J (2013) An assessment of sample preservation methods for the determination of stable carbon and nitrogen isotope ratios in mollusks. Anal Lett 46:2620–2634. doi:https://doi.org/10.1080/00032719.2013.805415

    Article  Google Scholar 

  • Lohse L, Kloosterhuis RT, de Stigter HC, Helder W, van Raaphorst W, van Weering TCE (2000) Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Mar Chem 69:193–201. doi:https://doi.org/10.1016/S0304-4203(99)00105-X

    Article  Google Scholar 

  • Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:https://doi.org/10.1007/s00442-008-1052-8

    Article  Google Scholar 

  • Mazumder D, Iles J, Kelleway J, Kobayashi T, Knowles L, Saintilan N, Hollins S (2010) Effect of acidification on elemental and isotopic compositions of sediment organic matter and macroinvertebrate muscle tissues in food web research. Rapid Commun Mass Sp 24:2938–2942. doi:https://doi.org/10.1002/rcm.4729

    Article  Google Scholar 

  • McCutchan, JH, William ML, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi:https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  Google Scholar 

  • Mill AC, Sweeting JC, Barnes C, Al-Habsi S, MacNeil AM (2008) Mass-spectrometer bias in stable isotope ecology. Limnol Oceanogr-Meth 6:34–39

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relations between δ15N and animal age. Geochim Cosmochim Ac 48:1135–1140. doi:https://doi.org/10.1016/0016-7037(84)90204-7

    Article  Google Scholar 

  • Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T (2007) Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res Pt I 54:1015–1023. doi:https://doi.org/10.1016/j.dsr.2007.03.005

    Article  Google Scholar 

  • Ng JSS, Wai T-C, Williams GA (2007) The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar Chem 103:97–102. doi:https://doi.org/10.1016/j.marchem.2006.09.001

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi:https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    Article  Google Scholar 

  • Rennie MD, Ozersky T, Evans DO (2012) Effects of formalin preservation on invertebrate stable isotope values over decadal time scales. Can J Zoolog 90:1320–1327. doi:https://doi.org/10.1139/z2012-101

    Article  Google Scholar 

  • Roberts JM, Shipboard Party (2013) Changing oceans expedition 2012. Heriot-Watt University, Edinburgh, RRS James Cook 073 Cruise Report, 224 p

    Google Scholar 

  • Ruiz-Cooley RI, Garcia KY, Hetherington ED (2011) Effects of lipid removal and preservatives on carbon and nitrogen stable isotope ratios of squid tissues: implications for ecological studies. J Exp Mar Biol Ecol 407:101–107. doi:https://doi.org/10.1016/j.jembe.2011.07.002

    Article  Google Scholar 

  • Sarakinos HC, Johnson ML, Vander Zanden MJ (2002) A synthesis of tissue preservation effects on carbon and nitrogen stable isotope signatures. Can J Zoolog 80:381–387

    Article  Google Scholar 

  • Schlacher TA, Connolly RM (2014) Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis. Methods Ecol Evol 5:541–550. doi:https://doi.org/10.1111/2041-210X.12183

    Article  Google Scholar 

  • Serrano S, Serrano L, Mateo MA, Colombini I, Chelazzi L, Gagnarli E, Fallaci M (2008) Acid washing effect on elemental and isotopic composition of whole beach arthropods: Implications for food web studies using stable isotopes. Acta Oecol 34:89–96. doi:https://doi.org/10.1016/j.actao.2008.04.002

    Article  Google Scholar 

  • Sokolowski A, SzczepaÅ„ska A, Richard P, KÄ™dra M, Wolowicz M, WÄ™slawski JM (2014) Trophic structure of the microbenthic community of Hornsund, Spitsbergen, based on the determination of stable carbon and nitrogen isotopic. Polar Biol 37:1247–1260. doi:https://doi.org/10.1007/s00300-014-1517-7

    Article  Google Scholar 

  • Søreide JE, Tamelander T, Hop H, Hobson KA, Johansen I (2006) Sample preparation effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Mar Ecol-Prog Ser 328:17–28. doi:https://doi.org/10.3354/meps328017

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton, 382 p

    Google Scholar 

  • Sweetman AK, Witte U (2008) Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar Ecol-Prog Ser 355:73–84. doi:https://doi.org/10.3354/meps07240

    Article  Google Scholar 

  • Syväranta J, Vesala S, Rask M, Ruuhijärvi J, Jones RI (2008) Evaluating the utility of stable isotope analyses of archived freshwater sample materials 600:121–130. doi:https://doi.org/10.1007/s10750-007-9181-3

    Google Scholar 

  • Tu KL, Blanchard AL, Iken K, Horstmann-Dehn L (2015) Small-scale spatial variability in benthic food webs in the northeastern Chukchi Sea. Mar Ecol-Prog Ser 528:19–37. doi:10.3354meps11216

    Article  Google Scholar 

  • Vafeiadou A, Adao H, De Troch M, Moens T (2013) Sample acidification effects on carbon and nitrogen stable isotope ratios of macrofauna from a Zostera noltii bed. Mar Freshwater Res 64:741–745. doi:https://doi.org/10.1071/MF12169

    Article  Google Scholar 

  • van Oevelen D, Duineveld G, Lavaleye M, Mienis F, Soetaert K, Heip CHR (2009) The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr 54:1829–1844. doi:https://doi.org/10.4319/lo.2009.54.6.1829

    Article  Google Scholar 

  • Vander Zanden MJ, Fetzer WW (2007) Global patterns of aquatic food chain length. Oikos 116:1378–1388. doi:https://doi.org/10.1111/j.0030-1299.2007.16036.x

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and ä15N and the trophic position of aquatic consumers. Ecology 80:1395–1404. doi:https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2

    Article  Google Scholar 

  • Wolf N, Carleton SA, Martinez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26. doi:https://doi.org/10.1111/j.1365-2435.2009.01529.x

    Article  Google Scholar 

  • Xu J, Zhang M, Xie P (2011) Sympatric variability of isotopic baselines influences modeling of fish trophic patterns. Limnology 12:107–115. doi:https://doi.org/10.1007/s10201-010-0327-z

    Article  Google Scholar 

  • Yokoyama H, Sakami T, Ishihi Y (2009) Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariake Sound, southern Japan, determined by stable isotopes. Estuar Coast Shelf S 82:243–253. doi:https://doi.org/10.1016/j.ecss.2009.01.010

    Article  Google Scholar 

  • Yokoyama H, Tamaki A, Harada K, Shimoda K, Koyama K, Ishihi Y (2005) Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar Ecol-Prog Ser 296:115–128. doi:https://doi.org/10.3354/meps29611

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to captains, crews and science parties of the RRS James Cook (JC073 Changing Oceans Expedition) and the CCGS Amundsen (2013 ArcticNet Expedition). Thanks also to the Holland-I ROV team (JC073 Changing Oceans Expedition). Thanks to Anni Makela (University of Aberdeen) and Cindy Grant (University of ISMER) for sampling of the megafauna. Also thanks to Dr Evina Gontikaki (University of Aberdeen) for her guidance on sample preparation for isotope analysis, Kenneth Cruickshank (University of Aberdeen) for analysis on sample elemental composition, Dr Joy Matthews, Sylvia Duncan and Emily Schick at UC Davis Stable Isotope Facility and Barry Thornton and Gillian Martin from the James Hutton Institute for their co-operation on sample stable isotope analysis. Funding for the JC073 cruise was provided by the Natural Environment Research Council (NERC) UK Ocean Acidification (UKOA) research programme’s Benthic Consortium project (NE/H017305/1 to J Murray Roberts). Funding for participation in the Arctic crusie with CCGS Amundsen was provided by NERC funded research project ArcDEEP (NE/J023094/1 to Ursula Witte). Funding for analytical costs and field work was provided by the Marine Alliance for Science and Technology for Scotland (MASTS) (Biodiversity Grant to Ursula Witte, 140 SF10003-10) and ArcDEEP (NERC grant NE/J023094/1). Georgios Kazanidis was funded by a MASTS PhD scholarship and S. Bourgeois by the NERC ArcDEEP project.

Author information

Authors and Affiliations

  1. Oceanlab, School of Biological Sciences, University of Aberdeen, Newburgh, AB41 6AA, UK

    Georgios Kazanidis, Solveig Bourgeois & Ursula F. M. Witte

  2. Grant Institute, School of Geosciences/ATLAS project, University of Edinburgh, Edinburgh, EH9 3FE, UK

    Georgios Kazanidis

Authors
  1. Georgios Kazanidis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Solveig Bourgeois
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ursula F. M. Witte
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Georgios Kazanidis.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazanidis, G., Bourgeois, S. & Witte, U.F.M. On the Effects of Acid Pre-treatment on the Elemental and Isotopic Composition of Lightly- and Heavily-calcified Marine Invertebrates. Ocean Sci. J. 54, 257–270 (2019). https://doi.org/10.1007/s12601-019-0014-x

Download citation

  • Received: 06 August 2018

  • Revised: 21 October 2018

  • Accepted: 28 December 2018

  • Published: 26 June 2019

  • Issue Date: June 2019

  • DOI: https://doi.org/10.1007/s12601-019-0014-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • acid pre-treatment
  • carbonate content
  • elemental composition
  • stable isotopes
  • food web
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature