Skip to main content

Advertisement

Log in

The potential roles of bacterial communities in coral defence: A case study at Talang-talang reef

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Complex microbial communities are known to exert significant influence over coral reef ecosystems. The Talang- Satang National Park is situated off the coast of Sematan and is one of the most diverse ecosystems found off-Sarawak. Interestingly, the Talang-talang reef thrives at above-average temperatures of 28- 30°C throughout the year. Through isolation and identification (16S rRNA) of native microbes from the coral, the surface mucus layer (SML), as well as the surrounding sediment and waters, we were able to determine the species composition and abundance of the culturable bacteria in the coral reef ecosystem. Isolates found attached to the coral are related mostly to Vibrio spp., presumably attached to the mucus from the water column and surrounding sediment. Pathogenic Vibrio spp. and Bacillus spp. were dominant amongst the isolates from the water column and sediment, while known coral pathogens responsible for coral bleaching, Vibrio coralliilyticus and Vibrio shiloi, were isolated from the coral SML and sediment samples respectively. Coral SML isolates were found to be closely related to known nitrogen fixers and antibiotic producers with tolerance towards elevated temperatures and heavy metal contamination, offering a possible explanation why the local corals are able to thrive in higher than usual temperatures. This specialized microbiota may be important for protecting the corals from pathogens by occupying entry niches and/or through the production of secondary metabolites such as antibiotics. The communities from the coral SML were tested against each other at 28, 30 and 32°C, and were also assessed for the presence of type I modular polyketides synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes which are both involved in the production of antibiotic compounds. The bacterial community from the SML exhibited antimicrobial properties under normal temperatures while pathogenic strains appeared toxic at elevated temperatures and our results highlight the role of the coral SML bacterial community in the coral’s defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPSPKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32(suppl 2):W405–W413

    Article  Google Scholar 

  • Arotsker L, Siboni N, Ben-Dov E, Kramarsky-Winter E, Loya Y, Kushmaro A (2009) Vibrio sp. as a potentially important member of the Black Band Disease (BBD) consortium in Favia sp. corals. FEMS Microbiol Ecol 70(70):515–24

    Article  Google Scholar 

  • Austin B, Zhang X-H (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(43):119–124

    Article  Google Scholar 

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49(49):10–24

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80(80):435–471

    Article  Google Scholar 

  • Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E (2000) Penetration of the Coral-Bleaching Bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 66(66): 3031–3036

    Article  Google Scholar 

  • Banin E, Vassilakos D, Orr E, Martinez RJ, Rosenberg E (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46(46): 418–422

    Article  Google Scholar 

  • Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9(9):1995–2006

    Article  Google Scholar 

  • Ben-Haim Y, Banim E, Kushmaro A, Loya Y, Rosenberg E (1999) Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ Microbiol 1(1): 223–229

    Article  Google Scholar 

  • Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7(7):1162–1174

    Article  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2(2):350–363

    Article  Google Scholar 

  • Broadbent AD, Jones GB, Jones RJ (2002) DMSP in Corals and Benthic Algae from the Great Barrier Reef. Estuar Coast Shelf Sci 55(55):547–555

    Article  Google Scholar 

  • Cervino JM, Thompson FL, Gomez-Gil B, Lorence EA, Goreau TJ, Hayes RL, Winiarski-Cervino KB, Smith GW, Hughen K, Bartels E (2008) The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. J Appl Microbiol 105(105):1658–1671

    Article  Google Scholar 

  • Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD (1985) UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol 49(49): 1361–1365

    Google Scholar 

  • Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274(5295):2025–2031

    Article  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24(24):1073–1109

    Article  Google Scholar 

  • Ducklow H, Mitchell R (1979) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24(24):706–714

    Article  Google Scholar 

  • Eden PA, Schmidt TM, Blakemore RP, Pace NR (1991) Phylogenetic analysis of aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-apecific DNA. Int J Syst Bacteriol 41(41):324–325

    Article  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward A, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Anton Leeuw J Microb 87(87):37–42

    Article  Google Scholar 

  • Goreau TJ, Hayes RL (2008) Effects of rising seawater temperature on coral reefs. In: Safran P (ed) Encyclopedia of life support systems(EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576):2158–2162

    Article  Google Scholar 

  • Hashem M, El-Barbary M (2013) Vibrio harveyi infection in Arabian Surgeon fish (Acanthurus sohal) of Red Sea at Hurghada, Egypt. Egypt J Aquat Res 39(39):199–203

    Article  Google Scholar 

  • Hill RW, Dacey JWH, Krupp DA (1995) Dimethylsulfoniopropionate in Reef Corals. Bull Mar Sci 57(57):489–494

    Google Scholar 

  • Hjelm M, Bergh Ø, Riaza A, Nielsen J, Melchiorsen J, Jensen S, Duncan H, Ahrens P, Birkbeck H, Gram L (2004) Selection and identification of autochthonous potential probiotic bacteria from Turbot Larvae (Scophthalmus maximus) rearing units. Syst Appl Microbiol 27(27):360–371

    Article  Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584

    Article  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Anton Leeuw J Microb 87(87):43–48

    Article  Google Scholar 

  • Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A (2007) Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett 276(276):106–113

    Article  Google Scholar 

  • Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51(51):1383–1388

    Google Scholar 

  • Lampert Y, Kelman D, Nitzan Y, Dubinsky Z, Behar A, Hill RT (2008) Phylogenetic diversity of bacteria associated with the mucus of Red Sea corals. FEMS Microbiol Ecol 64(64):187–198

    Article  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. P Natl Acad Sci USA 82(82):6955–6959

    Article  Google Scholar 

  • Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolitesm Appl Environ Microbiol 70(70):7520–7529

    Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97(97):2651–2674

    Article  Google Scholar 

  • Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50(50):835–846

    Article  Google Scholar 

  • Matu EN, Kirira PG, Kigondu EVM, Moindi EM, Amugune BA (2012) Antimicrobial activity of organic total extracts of three Kenyan medicinal plants. Afr J Pharmacol Ther 1(1):14–48

    Google Scholar 

  • Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus salinispora. Appl Environ Microbiol 71(71):7019–7028

    Article  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68(68): 5005–5011

    Article  Google Scholar 

  • Neu HC, Gootz TD (2006) Antimicrobial chemotherapy. In: Baron S (ed) Medical Microbiology. 4th edn. University of Texas Medical Branch at Galveston, TX

    Google Scholar 

  • Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol Ecol 69(69):384–394

    Article  Google Scholar 

  • Patz J, Epstein P, Burke T, Balbus J (1996) Global climate change and emerging infectious diseases. JAMA 275(275):217–223

    Article  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. P Natl Acad Sci USA 99(99):14002–14007

    Article  Google Scholar 

  • Pilcher N, Cabanban A (2000) The status of coral reefs in Eastern Malaysia. In: Global Coral Reef Monitoring Network (GCRMN) Report. Australia Institute of Marine Science, Townsville

    Google Scholar 

  • Radjasa OK, Sabdono A (2003) Screening of secondary metaboliteproducing bacteria associated with corals using 16S rDNAbased approach. J Coast Dev 7(7):11–19

    Google Scholar 

  • Raina J-B, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18(18):101–108

    Article  Google Scholar 

  • Raina J-B, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75(75):3492–501

    Article  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol-Prog Ser 322:1–14

    Article  Google Scholar 

  • Ritchie KB, Smith GW (1995a) Carbon-source utilization patterns of coral-associated marine heterotrophs. J Mar Biotechnol 3(3): 105–107

    Google Scholar 

  • Ritchie KB, Smith GW (1995b) Preferential carbon utilization by surface bacterial communities from water mass, normal, and white-band diseased Acropora cervicornis. Mol Mar Biol Biotechnol 4(4):345–352

    Google Scholar 

  • Ritchie K, Dennis J, McGrath T, Smith G (1994) Bacterial associated with bleached and nonbleached areas of montastrea annularis. In: Kass LB (ed) Proceedings of the 5th Symposium on the Natural History of the Bahamas. San Salvador, Bahamas, pp 75–80

    Google Scholar 

  • Ritchie K, Smith G (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease SE — 13. Springer, Berlin, pp 259–264

    Chapter  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol-Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4(4):318–326

    Article  Google Scholar 

  • Rosenberg E, Falkovitz L (2004) The vibrio shiloi/oculina patogonica model system of coral bleaching. Annu Rev Microbiol 58(58):143–159

    Article  Google Scholar 

  • Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56(56):481–488

    Article  Google Scholar 

  • Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Microbiol 55(55):1123–1127

    Article  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67(67):371–380

    Article  Google Scholar 

  • Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M (2009) Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3(3):512–521

    Article  Google Scholar 

  • Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG (2009) Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE 4(4):e4511

    Article  Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol-Prog Ser 266:273–302

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(30):2725–2729

    Article  Google Scholar 

  • Van Alstyne K, Schupp P, Slattery M (2006) The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25(25):321–327

    Article  Google Scholar 

  • Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, Smith GW, Weil E, Moeller PDR, Morris PJ (2010) Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Microb Ecol 59(59):646–657

    Article  Google Scholar 

  • Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schröder D, Laatsch H, Lang S, Pukall R, Tindall BJ (2004) Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54(54):1177–1184

    Article  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge rhopaloeides odorabile. Appl Environ Microbiol 67(67):434–444

    Article  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff J (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11(11):287–300

    Article  Google Scholar 

  • Wilson B, Aeby GS, Work TM, Bourne DG (2012) Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiol Ecol 80(80):509–520

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity W. I. Kuek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuek, F.W.I., Lim, LF., Ngu, LH. et al. The potential roles of bacterial communities in coral defence: A case study at Talang-talang reef. Ocean Sci. J. 50, 269–282 (2015). https://doi.org/10.1007/s12601-015-0024-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-015-0024-2

Key words

Navigation