Skip to main content
Log in

Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afonso A, Hon F, Brambilla R (1999) Structure elucidation of Sch20562, a glucosidic cyclic dehydropeptide lactone-the major component of W-10 antifungal antibiotic. J Antibiot (Tokyo) 52:383–397

    CAS  Google Scholar 

  • Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741

    Article  PubMed  CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. European J Phycol 43:1–86

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    CAS  Google Scholar 

  • Bernan VS, Greenstein M, Carter GT (2004) Mining marine microorganisms. Curr Med Chem Anti-infective Agents 3:181–195

    Article  CAS  Google Scholar 

  • Bhattacharjee AK, Hartell MG, Nichols DA, Hicks RP, Stanton B, van Hamont JE, Milhous WK (2004) Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. Eur J Med Chem 39:59–67

    Article  PubMed  CAS  Google Scholar 

  • Brinkhoff T, Bach G, Heidorn T, Liang LF, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Env Microbiol 70:2560–2565

    Article  CAS  Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  PubMed  CAS  Google Scholar 

  • Cheng XC, Jensen PR, Fenical W (1999) Arenaric acid, a new pentacyclic polyether produced by a marine bacterium (Actinomycetales). J Nat Prod 62:605–607

    Article  PubMed  CAS  Google Scholar 

  • Collins VG, Willoughby LG (1962) The distribution of bacteria and fungal spores in Blelham Tarn with particular reference to an experimental overturn. Arch Mikrobiol 43:294–307

    Article  PubMed  CAS  Google Scholar 

  • Corre S, Prieur D (1990) Density and morphology of epiphytic bacteria on the kelp Laminaria digitata. Botanica Marina 33:515–523

    Article  Google Scholar 

  • Crisley FD (1964) Antibacterial interaction between bromothymol blue and polymyxin B. Nature 203:211–213

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Crusz SA, Cámara M (2007) Quorum sensing. Curr Biol 17:907–910

    Article  CAS  Google Scholar 

  • Dimitrieva GY, Dimitriev SM (1996) Symbiotic microflora of the brown algae from the genus Laminaria as a bioindicator of the ecological state of coastal Laminaria biocoenoses. Mar Biol 22:300–305

    Google Scholar 

  • Dimitrieva GY, Crawford RL, Yuksel GU (2006) The nature of plant growth-promoting effects of a pseudoalteromonad associated with the marine algae Laminaria japonica and linked to catalase excretion. J Appl Microbiol 100:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA-sequences—a maximum-likelihood approach. J Mol Evo 17:368–376

    Article  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  PubMed  CAS  Google Scholar 

  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–229

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni S, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 47–84

    Google Scholar 

  • Gonzalez JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Env Microbio 63:4237–4242

    CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Sys Biol 52:696–704

    Article  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acid Res 33:W557–W559

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (2007) Therapeutic treasures from the deep. Nat Chem Biol 3:457–458

    Article  PubMed  CAS  Google Scholar 

  • Hubbard BK, Walsh CT (2003) Vancomycin assembly: nature’s way. Angew Chem Int Ed Engl 42:730–765

    Article  PubMed  CAS  Google Scholar 

  • Imamura N, Nishijima M, Takadera T, Adachi K, Sakai M, Sano H (1997) New anticancer antibiotics pelagiomicins, produced by a new marine bacterium Pelagiobacter variabilis. J Antibiot (Tokyo) 50:8–12

    CAS  Google Scholar 

  • Ishihara H, Takoh M, Nishibayashi R, Sato A (2002) Distribution and variation of bacitracin synthetase gene sequences in laboratory stock strains of Bacillus licheniformis. Curr Microbiol 45:18–23

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EP, Bakunina IY, Nedashkovskaya OI, Gorshkova NM, Alexeeva YV, Zelepuga EA, Zvaygintseva TN, Nicolau DV, Mikhailov VV (2003) Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr Microbiol 46:6–10

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kain JM (1979) A view of the genus Laminaria. Ocean Mar Biol Ann Rev 17:101–161

    Google Scholar 

  • Kamigiri K, Tokunaga T, Shibazaki M, Setiawan B, Rantiatmodjo RM, Morioka M, Suzuki K (1996) YM-30059, a novel quinolone antibiotic produced by Arthrobacter sp. J Antibiot (Tokyo) 49:823–825

    CAS  Google Scholar 

  • Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R (2006) National Nosocomial Infections Surveillance System. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis 42:389–391

    Article  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  PubMed  CAS  Google Scholar 

  • Lane DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Laycock RA (1974) Detrital food-chain based on seaweeds .1. Bacteria associated with surface of Laminaria fronds. Mar Biol 25:223–231

    Article  Google Scholar 

  • Longeon A, Peduzzi J, Barthelemy M, Corre S, Nicolas JL, Guyot M (2004) Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X153. Mar Biotechnol 6:633–641

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Stunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Matsumoto N, Tsuchida T, Umekita M, Kinoshita N, Iinuma H, Sawa T, Hamada M, Takeuchi T (1997) Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. I. Taxonomy, fermentation, isolation and antimicrobial activities. J Antibiot (Tokyo) 50:900–905

    CAS  Google Scholar 

  • Mazure HGF, Field JG (1980) Density and ecological importance of bacteria on kelp fronds in an upwelling region. J Exp Mar Biol Ecol 43:173–182

    Article  Google Scholar 

  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33

    Article  PubMed  CAS  Google Scholar 

  • Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39:139–145

    Article  PubMed  CAS  Google Scholar 

  • Muscholl-Silberhorn A, Thiel V, Imhoff J (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55:94–106

    Article  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2006) Compounds from the ocean as drugs and drug leads. Chemistry today 24:42–47

    Google Scholar 

  • Nold SC, Zwart G (1998) Patterns and governing forces in aquatic microbial communities. Aquat Ecol 32:17–35

    Article  CAS  Google Scholar 

  • Oclarit JM, Okada H, Ohta S, Kaminura K, Yamaoka Y, Iizuka T, Miyashiro S, Ikegami S (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:7–16

    PubMed  CAS  Google Scholar 

  • Pohlmann J, Lampe T, Shimada M, Nell PG, Pernerstorfer J, Svenstrup N, Brunner NA, Schiffer G, Freiberg C (2005) Pyrrolidinedione derivatives as antibacterial agents with a novel mode of action. Bioorg Med Chem Lett 15:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Recktenwald J, Shawky R, Puk O, Pfennig F, Keller U, Wohlleben W, Pelzer S (2002) Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiol 148:1105–1118

    CAS  Google Scholar 

  • Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715–716

    PubMed  CAS  Google Scholar 

  • Sawabe T, Ohtsuka M, Ezura Y (1997) Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carb Res 304:69–76

    Article  CAS  Google Scholar 

  • Sawabe T, Makino H, Tatsumi M, Nakano K, Tajima K, Iqbal MM, Yumoto I, Ezura Y, Christen R (1998a) Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol 48:769–774

    Article  PubMed  CAS  Google Scholar 

  • Sawabe T, Sawada C, Suzuki E, Ezura Y (1998b) Intracellular alginate-oligosaccharide degrading enzyme activity that is incapable of degrading intact sodium alginate from a marine bacterium Alteromonas sp. Fish Sci 64:320–324

    CAS  Google Scholar 

  • Sawabe T, Tanaka R, Iqbal MM, Tajima K, Ezura Y, Ivanova EP, Christen R (2000) Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol 50:265–271

    PubMed  CAS  Google Scholar 

  • Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15

    Article  Google Scholar 

  • Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Toledo G, Green W, Gonzalez RA, Christoffersen L, Podar M, Chang HW, Hemscheidt T, Trapido-Rosenthal HG, Short J, Bidigare RR, Mathur EJ (2006) High throughput cultivation for isolation of novel marine microorganisms. Oceanography 19:120–125

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Inuma H, Kinoshita N, Ikeda T, Sawa T, Hamada M, Takeuchi T (1995) Azicemicins A and B, a new antimicrobial agent produced by Amycolatopsis. I. Taxonomy, fermentation, isolation, characterization and biological activities. J Antibiot (Tokyo) 48:217–221

    CAS  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci 104:10376–10381

    Article  PubMed  CAS  Google Scholar 

  • Urvantseva A, Bakunina I, Nedashkovskaya O, Kim S, Zvyagintseva T (2006) Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Appl Biochem Microbiol 42:484–491

    Article  CAS  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. J Microbiol Biotechnol 17:691–696

    Article  CAS  Google Scholar 

  • Vairappan CS, Suzuki M, Motomura T, Ichimura T (2001) Pathogenic bacteria associated with lesions and thallus bleaching symptoms in the Japanese kelp Laminaria religiosa Miyabe (Laminariales, Phaeophyceae). Hydrobiologia 445:183–191

    Article  Google Scholar 

  • Vandamme EJ, Demain AL (1976) Nutrition of Bacillus brevis ATCC 9999, the producer of gramicidin S. Antimicrob Agents Chemother 10:265–273

    PubMed  CAS  Google Scholar 

  • Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schorder D, Laatsch H, Lang S, Pukall R, Tindall BJ (2004) Oceanibulbus indolifex gen. nov., sp nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Wang GY (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551

    Article  PubMed  CAS  Google Scholar 

  • Wang JX, Mou HJ, Jiang XL, Guan HS (2006) Characterization of a novel beta-agarase from marine Alteromonas sp SY37-12 and its degrading products. Appl Microbiol Biotechnol 71:833–839

    Article  PubMed  CAS  Google Scholar 

  • Watve MG, Ticko R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  PubMed  CAS  Google Scholar 

  • Wickerham L (1951) Taxonomy of yeasts. U S Dept Techt Bull 1029:1–56

    Google Scholar 

  • Yan LM, Boyd KG, Adams DR, Burgess JG (2003) Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl Environ Microbiol 69:3719–3727

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K, Takadera T, Adachi K, Nishijima M, Sano H (1997) Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J Antibiot 50:949–953

    PubMed  CAS  Google Scholar 

  • Zheng ZH, Zeng W, Huang YJ, Yang ZY, Li J, Cai HR, Su WJ (2000) Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 188:87–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministerium für Wissenschaft, Wirtschaft und Verkehr des Landes Schleswig-Holstein, Germany (project “Isolierung und Charakterisierung neuer Wirkstoffe aus Laminaria saccharina, Halichondria panicea und assoziierten Mikroorganismen” and the Kieler Wirkstoff-Zentrum am IFM-GEOMAR). We thank CRM and MariLim, both located at Kiel (Germany), for taking the L. saccharina samples. Special thanks go to Katja Kulke and Regine Wicher for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, J., Thiel, V., Nagel, K. et al. Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11, 287–300 (2009). https://doi.org/10.1007/s10126-008-9143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9143-4

Keywords

Navigation