Skip to main content

Advertisement

Log in

Integrating pesticides and predatory mites in soft fruit crops

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Incorporation of predatory mites (Phytoseiidae) as biological control agents in soft fruit integrated pest management (IPM) programmes requires understanding of the interactions between environment, other organisms and crop management practices. This knowledge is dispersed among commercial online databases and peer reviewed papers and can be contradictory or difficult to access and interpret.

The review brings together findings from databases and peer reviewed laboratory, field and semi-field studies of pesticide toxicity and persistence to soft fruit phytoseiid mites and also considers resistance, spray programmes and how these interact with species sensitivity, alternative food availability and plant structure.

Predictably, acaricides and insecticides are the most toxic pesticides to phytoseiid mites, but their toxicity varies. Few fungicides are harmful, but data for many is lacking; it is very scarce for herbicides. There is virtually no data on tank mixes of pesticides applied to many soft fruit crops. Persistence of pesticides varies so release times for predatory mites after application range from a few days to several weeks and some of the most toxic active ingredients are not always the most persistent. Phytoseiid species vary in susceptibility to pesticides and in some populations resistance has occurred. Interactions with the environment are more difficult to define, but fungicides, for example, may reduce alternative food items whilst plant architecture may offer phytoseiid mites protection from spray residues.

This review provides a timely synopsis to inform future research needs and provides practical guidance to enable better management of predatory mites in soft fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnello, A. M., Reissig, W. H., Kovach, J., & Nyrop, J. P. (2003). Integrated apple pest management in New York State using predatory mites and selective pesticides. Agriculture Ecosystems and Environment, 9, 183–195.

    Article  Google Scholar 

  • Anber, H. A. I., & Overmeer, W. P. J. (1988). Resistance to organophosphates and carbamates in the predacious mite Amblyseius potentillae (Garman) due to insensitive acetylcholinesterase. Pesticide Biochemistry and Physiology, 319, 91–98.

    Article  Google Scholar 

  • Argolo, P. S., Jacas, J. A., & Urbaneja, A. (2013). Comparative toxicity of pesticides in three phytoseiid mites with different life-style occurring in citrus: Euseius stipulatus, Neoseiulus californicus and Phytoseiulus persimilis. Experimental and Applied Acarology, 62, 33–46.

    Article  PubMed  Google Scholar 

  • Auger, P., Kreiter, S., Mattioda, H., & Duriatti, A. (2004). Side effects of mancozeb on Typhlodromus pyri (Acari: Phytoseiidae) in vineyards: results of multi-year field trials and a laboratory study. Experimental and Applied Acarology, 33, 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, F. M., & Jacas, J. A. (1995). Pesticides and phytoseiid mites: strategies for risk assessment. Ecotoxicology and Environmental Safety, 32, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Biobest (2013) Biobest sustainable crop management. http://www.biobest.be/. Accessed 09 Oct 2013.

  • Blommers, L. H. M. (1994). Integrated pest management in European apple orchards. Annual Reviews of Entomology, 39, 213–241.

    Article  Google Scholar 

  • Bonafos, R., Vigues, V., Serrano, E., & Auger, P. (2008). Resistance monitoring to deltamethrin and chlorpyriphos-ethyl in 13 populations of Typhlodromus pyri Scheuten (Acari: Phytoseiidae) from vineyards in the southwest of France. Crop Protection, 27, 3–5.

    Article  Google Scholar 

  • Cheng, X., Zheng, W., Zhao, W., & Zhang, H. (2013). Toxicity test of 12 pesticides against predatory mites. Plant Protection, 39, 184–187.

    CAS  Google Scholar 

  • Duchovskiene, L., Raudonis, L., Karkleliene, R., & Starkute, R. (2009). Toxicity of insecticides to predatory mite Phytoseiulus persimilis in cucumber. Sodininkyste ir Daržininkyste, 28, 41–46.

    Google Scholar 

  • Duso, C., Pozzebon, A., Baldessari, M., Girolami, V., Angeli, G., Tirello, P., Lorenzon, M., Malagnini, V., & Pellizzari, G-S. (2011). Availability of alternative foods can influence the impact of pesticides on predatory mites (Acari): a summary of the evidence. Zoosymposia, 6, 124–130.

  • Duso, C., Fanti, M., & Pozzebon, A. (2009). Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards? BioControl, 54, 369–382.

    Article  Google Scholar 

  • Gerson, U. & Weintraub, P. G. (2007). Mites for the control of pests in protected cultivation. Pest Management Science, 63, 658–676.

    Article  CAS  PubMed  Google Scholar 

  • Hardman, J. M., Rogers, R. E. L., Nyrop, J. P., & Frisch, T. (1991). Effect of pesticide applications on abundance of European red mite (Acari: Tetranychidae) and Typholodromus pyri (Acari: Phytoseiidae) in Nova Scotian apple orchards. Journal of Economic Entomology, 84, 570–580.

    Article  CAS  Google Scholar 

  • Hassan, S. A. (1994). Activities of the IOBC/WPRS Working Group, Pesticides and Beneficial Organisms. In: Pesticides and Beneficial Organisms. (ed., Vogt H.), IOBC/WPRS Bulletin, 17, 1–5.

  • Hoy, M. A., & Conley, J. (1987). Toxicity of pesticides to western predatory mite. California Agriculture, 41, 12–14.

    Google Scholar 

  • IPM impact (2013). IMP impact online compatibility database, http://www.ipmimpact.com/. Accessed 22 Nov 2013.

  • Irigaray, F. JS-de-C., Zalom, F. G. & Thompson, P. B. (2007). Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biological Control, 40, 153–159.

  • Irving, R. (2011). The identification of overwintering predatory mites in strawberry and cane fruit and investigation of on-farm production. HDC Final report. SF1152011.

  • ISI Web of Knowledge platform (2014). Thomson Reuters.

  • Jacas, J. A., & Garcia-Marı, F. (2001). Side-effects of pesticides on selected natural enemies occurring in citrus in Spain. IOBC/WPRS Bulletin, 24, 103–112.

    Google Scholar 

  • Jackson, G. J., & Ford, J. B. (1973). The feeding behaviour of Phytoseiulus persimilis (Acarina: Phytoseiidae), particularly as affected by certain pesticides. Annals of Applied Biology, 75, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, P., Yorulmaz, S., & Ay, R. (2012). Toxicity of insecticides and acaricides to the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). International Journal of Acarology, 38, 699–705.

    Article  Google Scholar 

  • Kim, S. S., & Paik, C. H. (1996). Comparative toxicity of fenpyroximate to the predatory mite, Amblyseius womersleyi Schicha and the Kanzawa spider mite, Tetranychus kanzawai, Kishida (Acarina: Phytoseiidae, Tetranychidae). Applied Entomology and Zoology, 31, 369–377.

    CAS  Google Scholar 

  • Kongchuensin, M., & Takafuji, A. (2006). Effects of some pesticides on the predatory mite, Neoseiulus longispinosus (Evans) (Gamasina: Phytoseiidae). Journal of Acarological Society of Japan, 15, 17–27.

    Article  Google Scholar 

  • Koppert (2013). Koppert biological systems. http://www.koppert.es/. Accessed 09 October 2013.

  • Kreiter, S., Auger, P. & Bonafos, R. (2010). Side effects of pesticides on phytoseiid mites in French vineyards and orchards: laboratory and field trials. Trends in Acarology: Proceedings of the 12th International Congress, 457-464.

  • Lee, S. G., Hilton, S. A., Broadbent, A. B., & Kima, J.-H. (2002). Insecticide resistance in phytoseiid predatory mites, Phytoseiulus persimilis and Amblyseius cucumeris (Acarina: Phytoseiidae). Journal of Asia-Pacific Entomology, 5, 123–129.

    Article  Google Scholar 

  • Lee, S. G., Shipp, J. L., & Wang, K. (2001). Evaluation of two commercial strains of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) and laboratory-selected, pyrethroid-resistant and susceptible strains of Amblyseius fallacis (Garman) (Acarina: Phytoseiidae) for pesticide resistance on greenhouse cucumber. Journal of Asia-Pacific Entomology, 4, 165–169.

    Article  Google Scholar 

  • Lester, P. J., Thistlewood, H. M. A., & Harmsen, R. (1998). The effects of refuge size and number on acarine predator–prey dynamics in a pesticide-disturbed apple orchard. Journal of Applied Ecology, 35, 323–331.

    Article  Google Scholar 

  • Luff, M. L. (1983). The potential of predators for pest control. Agriculture Ecosystems and Environment, 10, 159–181.

    Article  Google Scholar 

  • Martinez-Rocha, L., Beers, E. H., & Dunley, J. E. (2008). Effect of pesticides on integrated mite management in Washington State. Journal of the Entomological Society of British Columbia, 105, 97–108.

    Google Scholar 

  • Miles, M., Kemmitt, G., & Valverde, P. (2006). Results from two years of field studies to determine Mancozeb based spray programmes with minimal impact on predatory mites in European vine cultivation. Communications in Agricultural and Applied Biological Sciences, 71, 285–293.

    CAS  PubMed  Google Scholar 

  • Momen, F. M., & Amer, S. A. A. (1999). Effect of rosemary and sweet marjoram on three predacious mites of the family Phytoseiidae (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica, 34, 355–361.

    Article  Google Scholar 

  • Nyrop, J. P., Kain, D. P., Minns, J., & Agnello, A. (1995). Improving the success of transferring the mite predator Typholodromus pyri from one orchard to another. Proceedings of the New York State Horticultural Society, 140, 6–10.

    Google Scholar 

  • Onzo, A., Hanna, R., Zannou, I., Sabelis, M. W., & Yaninek, J. S. (2003). Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos, 101, 59–69.

    Article  Google Scholar 

  • Onzo, A., Sabelis, M. W., & Hanna, R. (2010). Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Environmental Entomology, 39, 695–701.

    Article  PubMed  Google Scholar 

  • Pascual-Ruiz, S., & Urbaneja, A. (2006). Lista de efectos secundarios de plaguicidas sobre fauna útil en cítricos. Levante Agrícola, 380, 186–191.

    Google Scholar 

  • Pozzebon, A., Ahmad, S., Tirello, P., Lorenzon, M., & Duso, C. (2014). Does pollen availability mitigate the impact of pesticides on generalist predatory mites? Biocontrol, 59(5), 585–596.

    Article  CAS  Google Scholar 

  • Pozzebon, A., Borgo, M., & Duso, C. (2010). The effects of fungicides on non-target mites can be mediated by plant pathogens. Chemosphere, 79, 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Pozzebon, A. & Duso, C. (2010). Pesticide side-effects on predatory mites: the role of trophic interactions. Trends in Acarology, Proceedings of the 12 th International Congress, 465-469.

  • Provost, C., Coderre, D., Lucas, E., Chouinard, G., & Bostanian, N. J. (2005). Impact of intraguild predation and lambda-cyhalothrin on predation efficacy of three acarophagous predators. Pest Management Science, 61, 532–538.

    Article  CAS  PubMed  Google Scholar 

  • Provost, C., Coderre, D., Lucas, E., Chouinard, G., & Bostanian, N. J. (2003). Impacts of a sublethal dose of lambda-cyhalothrin on phytophagous mite intraguild predators in apple orchards. Phytoprotection, 84, 105–114.

    Article  CAS  Google Scholar 

  • Rahman, T., Spafford, H., & Broughton, S. (2011). Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Protection, 30, 468–475.

    Article  Google Scholar 

  • Raudonis, L., Survilienė, E., & Valiuškaitė, A. (2004). Toxicity of pesticides to predatory mites and insects in apple-tree site under field conditions. Environmental Toxicology, 19, 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Salman SY, Ay R. (2014). Effect of hexythiazox and spiromesifen resistance on the life cycle of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 64, 245–252.

  • San-Andres, V., Abad, R., Ansaloni, T., Aucejo, S., Belliure, B., Dembílio, O., Jacas, J. A., Pascual, S., Pina, T., Vanaclocha, P., Urbaneja, A., Mora, J., & Ripollés, J. L. (2006). Efectos secundarios sobre Euseius stipulatus de tratamientos cebo dirigidos al control de Ceratitis capitata. Phytoma España, 180, 38–45.

    Google Scholar 

  • Schmidt, R. A. (2014). Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Experimental and Applied Acarology, 62, 1–17.

    Article  PubMed  Google Scholar 

  • Schwartz, A. (1991). Laboratory evaluation of toxicity of registered pesticides to adult Amblyseius addoensis (Van der Merwe & Ryke) (Acari: Phytoseiidae). South African Journal for Enology and Viticulture, 12, 87–89.

    CAS  Google Scholar 

  • Simon, S., Sauphanor, B., & Lauri, P. E. (2007). Control of fruit tree pests through manipulation of tree architecture. Pest Technology, 1, 33–37.

    Google Scholar 

  • Solomon, M. G., Easterbrook, M. A., & Fitzgerald, J. D. (1993). Mite-management programmes based on organophosphate-resistant Typhlodromus pyri in UK apple orchards. Crop Protection, 12, 249–254.

    Article  CAS  Google Scholar 

  • Stavrinides, M. C., & Mills, N. J. (2009). Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biological Control, 48, 267–273.

    Article  CAS  Google Scholar 

  • Steiner, M., & Enkegaard, E. (2002). Progress towards integrated pest management for thrips (Thysanoptera: Thripidae) in strawberries in Australia. Bulletin of IOBC/WPRS, 25, 253–256.

    Google Scholar 

  • Sterk, G., Hassan, S. A., Baillod, M., Bakker, F., Bigler, F., Blümel, S., Bogenschutz, H., Boller, E., Bromand, B., Brun, J., Calis, J. N. M., Coremans-Pelseneer, J., Duso, C., Garrido, A., Grove, A., Heimbach, U., Hokkanen, H., Jacas, J., Lewis, G., Moreth, L., Polgar, L., Roversti, L., Samsoe-Petersen, L., Sauphanor, B., Schaub, L., Staubli, A., Tuset, J. J., Vainio, A., van de Veire, M., Viggiani, G., Vinuela, E., & Vogt, H. (1999). Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. BioControl, 44, 99–117.

    Article  CAS  Google Scholar 

  • Thompson, L. (2012). Pesticide impacts on beneficial species. Australian Government grape and Wine Research and development corp. Factsheet May, 2012, 1–7.

    Google Scholar 

  • Urbaneja, A., Pascual-Ruiz, S., Pina, T., Abad-Moyano, R., Vanaclocha, P., Monton, H., Dembilio, O., Castanera, P., & Jacas, J. A. (2008). Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant natural enemies occurring in citrus orchards. Pest Management Science, 64, 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Walde, S. J., Nyrop, J. P., & Hardman, J. M. (1992). Dynamics of Panonychus ulmi and Typhlodromus pyri: factors contributing to persistence. Experimental and Applied Acarology, 14, 261–291.

Download references

Acknowledgments

This study was funded by the Horticultural Development Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Fountain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 4 supplementary material

(DOC 109 kb)

Table 5 supplementary material

(DOC 93.5 kb)

Table 6 supplementary material

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fountain, M.T., Medd, N. Integrating pesticides and predatory mites in soft fruit crops. Phytoparasitica 43, 657–667 (2015). https://doi.org/10.1007/s12600-015-0485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0485-y

Keywords

Navigation