Skip to main content

Advertisement

Log in

Oxidation behavior of Ni-based superalloy GH4738 under tensile stress

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Revealing the oxidation behavior of superalloys is crucial for optimizing material properties and extending service life. This study investigated the oxidation behavior of superalloy GH4738 under stress states at 850 °C. High-throughput specimens were fabricated to withstand different stresses at the same time. Isothermal oxidation samples were analyzed using the mass gain method to obtain oxidation kinetic curves. The results show that the external stress below 200 MPa could improve the oxidation resistance of the GH4738. With tensile stress increasing, the oxide layer becomes thinner, denser and more complete, while internal oxidation decreases. The tensile stress alters the structure of the external oxide layer from a two-layer to a three-layer configuration. The Cr2O3 oxide layer inhibits the outward diffusion of Ti, leading to Ti enrichment at the oxide–matrix interface and altering the oxidation mechanism of GH4738.

Graphical abstract

摘要

揭示高温合金的氧化行为对优化材料性能和延长材料使用寿命至关重要。本文研究了高温合金GH4738在850 °C拉应力状态下的氧化行为。通过制备高通量梯度样品可一次性试验获得不同应力状态的材料。采用重量增加法对等温氧化样品进行了分析,得到了氧化动力学曲线。结果表明,200 MPa以下的外部拉应力可以提高GH4738的抗氧化性能。随着拉伸应力的增加,氧化层变得更薄、更致密、更完整,而内部氧化深度减少。拉伸应力使得外部氧化膜从两层改变为三层结构。致密的Cr2O3氧化层抑制了Ti元素向外扩散,导致Ti在合金基体和外部氧化膜界面富集,改变了GH4738的氧化机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pillai R, Chyrkin A, Quadakkers WJ. Modeling in high temperature corrosion: a review and outlook. Oxid Met. 2021;96(5):385. https://doi.org/10.1007/s11085-021-10033-y.

    Article  CAS  Google Scholar 

  2. Long HB, Mao SC, Liu YN, Zhang Z, Han XD. Microstructural and compositional design of Ni-based single crystalline superalloys - a review. J Alloy Compd. 2018;743:203. https://doi.org/10.1016/j.jallcom.2018.01.224.

    Article  CAS  Google Scholar 

  3. Ye XJ, Yang BB, Nie Y, Yu S, Li YP. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy. Corros Sci. 2021;185:109436. https://doi.org/10.1016/j.corsci.2021.109436.

    Article  CAS  Google Scholar 

  4. Xu F, Le PW, Li HS, Huang AH, Zhang JF, Bao J. High-temperature oxidation behavior and mechanism of second-generation Nickel-based single crystal superalloy. Chin J Rare Met. 2023;47(4):493. https://doi.org/10.13373/j.cnki.cjrm.XY22060006.

    Article  Google Scholar 

  5. Zhai YD, Chen YH, Zhao YS, Long HB, Li XQ, Deng QS, Lu H, Yang XM, Yang G, Li W, Yang LY, Mao SC, Zhang Z, Li A, Han XD. Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: the interface junction initiated outwards oxidation. Acta Mater. 2021;215:116991. https://doi.org/10.1016/j.actamat.2021.116991.

    Article  CAS  Google Scholar 

  6. Zhang JL, Zhaoa ZH, Kong YH, Zhang Z, Zhong QP. Crack initiation and propagation mechanisms during thermal fatigue in directionally solidified superalloy DZ125. Int J Fatigue. 2019;119:355. https://doi.org/10.1016/j.ijfatigue.2018.09.001.

    Article  CAS  Google Scholar 

  7. Ma JY, Jiang WX, Wang J, Zhang YF, Zhang Z. Initial oxidation behavior of a single crystal superalloy during stress at 1150 °C. Sci Rep. 2020;10(1):3089. https://doi.org/10.1038/s41598-020-59968-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramsay JD, Evans HE, Child DJ, Taylor MP, Hardy MC. The influence of stress on the oxidation of a Ni-based superalloy. Corros Sci. 2019;154:277. https://doi.org/10.1016/j.corsci.2019.04.023.

    Article  CAS  Google Scholar 

  9. Wang HP, Liu D, Wang JG, Yang YH, Wang LX, Wang H, Rao HD, Nan JG. Role of size and amount of γ’ phase on creep properties of Waspaloy. Mater Charact. 2021;181:111498. https://doi.org/10.1016/j.matchar.2021.111498.

    Article  CAS  Google Scholar 

  10. Yao HX, Dong JX, Gong ZH, Zhao JQ, Yang G. Influence of replacing molybdenum with tungsten on the creep fracture property of waspaloy Nickel-based alloy. Metals. 2022;12(11):1842. https://doi.org/10.3390/met12111842.

    Article  CAS  Google Scholar 

  11. Wu S, Song HY, Peng HZ, Hodgson PD, Wang H, Wu XH, Zhu YM, Lam MC, Huang AJ. A microstructure-based creep model for additively manufactured nickel-based superalloys. Acta Mater. 2022;224:117528. https://doi.org/10.1016/j.actamat.2021.117528.

    Article  CAS  Google Scholar 

  12. Yildirim CV, Sirin S, Kivak T, Sarikaya M. The effect of nanofluids reinforced with different surfactants on the machining and friction-wear properties of Waspaloy. Tribilogy Int. 2023;181:108316. https://doi.org/10.1016/j.triboint.2023.108316.

    Article  CAS  Google Scholar 

  13. Su R, Li JX, Wu DY, Hu FH, Liang XZ, Shen QY, Tian WG, Wang YL, Ma HK, Narayanaswamy B, Dong HC, Wang Q. Microstructural evolution and hot-compressive behavior of Waspaloy forged bolts: experimental and finite element simulation. J Market Res. 2023;24:3194. https://doi.org/10.1016/j.jmrt.2023.03.206.

    Article  CAS  Google Scholar 

  14. Yang JJ, Jing FL, Yang ZM, Jiang KH, Hu DY, Zhang B. Thermomechanical fatigue damage mechanism and life assessment of a single crystal Ni-based superalloy. J Alloy Compd. 2021;872:159578. https://doi.org/10.1016/j.jallcom.2021.159578.

    Article  CAS  Google Scholar 

  15. Ma WB, Luo HY, Yang XG. The effects of grain size and twins density on high temperature oxidation behavior of nickel-based superalloy GH738. Materials. 2020;13(18):4166. https://doi.org/10.3390/ma13184166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Xue H, Wang Y. Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000 °C. Rare Met. 2021;40(3):616. https://doi.org/10.1007/s12598-020-01513-2.

    Article  CAS  Google Scholar 

  17. Zhou CH, Ma HT, Wang L. Comparative study of oxidation kinetics for pure nickel oxidized under tensile and compressive stress. Corros Sci. 2010;52(1):210. https://doi.org/10.1016/j.corsci.2009.09.005.

    Article  CAS  Google Scholar 

  18. Ye XJ, Yang BB, Liu JT, Lai RL, Li YP. Influence of minor tensile stress on the oxidation behavior of powder metallurgy superalloy. Corros Sci. 2022;206:110492. https://doi.org/10.1016/j.corsci.2022.110492.

    Article  CAS  Google Scholar 

  19. Qi HY, Liang XB, Li SL, Yang XG. High-temperature oxidation behavior of DZ125 Ni-based superalloy under tensile stress. Rare Met. 2022;41(12):4188. https://doi.org/10.1007/s12598-016-0767-7.

    Article  CAS  Google Scholar 

  20. Latief FH, Kakehi K, Fu XT, Tashiro Y. Isothermal oxidation behavior characteristics of a second generation Ni-base single crystal superalloy in air at 1000 and 1100 degrees C. Int J Electrochem Sci. 2012;7(9):8369. https://doi.org/10.1016/S1452-3981(23)18000-X.

    Article  CAS  Google Scholar 

  21. Zheng L, Zhang MC, Dong JX. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000 degrees C. Appl Surf Sci. 2010;256(24):7510. https://doi.org/10.1016/j.apsusc.2010.05.098.

    Article  CAS  Google Scholar 

  22. Sun XY, Zhang LF, Pan YM, Huang ZW, Jiang L. Investigation of breakaway oxidation kinetics of nickel-base single crystal superalloys: modeling and experiments. Materials Today Communications. 2022;32:103893. https://doi.org/10.1016/j.mtcomm.2022.103893.

    Article  CAS  Google Scholar 

  23. Zhang JC, Jia LN, Weng JF, Su LF, Kong B, Zhang H. Microstructures and high-temperature oxidation behavior of directionally solidified Nb–Si-based alloys with Re additions. Rare Met. 2023;42(1):273. https://doi.org/10.1007/s12598-016-0788-2.

    Article  CAS  Google Scholar 

  24. Chang JX, Wang D, Zhang G, Lou LH, Zhang J. Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys. Corros Sci. 2017;117:35. https://doi.org/10.1016/j.corsci.2017.01.011.

    Article  CAS  Google Scholar 

  25. Teng JW, Gong XJ, Yang BB, Yu S, Liu JT, Li YP. Influence of Ti addition on oxidation behavior of Ni-Cr-W-based superalloys. Corros Sci. 2021;193:109882. https://doi.org/10.1016/j.corsci.2021.109882.

    Article  CAS  Google Scholar 

  26. Stott FH, Wood GC, Golightly FA. The isothermal oxidation behaviour of Fe-Cr-Al and Fe-Cr-Al-Y alloys at 1200°C. Corros Sci. 1979;19(11):869. https://doi.org/10.1016/S0010-938X(79)80110-9.

    Article  CAS  Google Scholar 

  27. Moricca MDP, Varma SK. Isothermal oxidation behaviour of Nb–W–Cr Alloys. Corros Sci. 2010;52(9):2964. https://doi.org/10.1016/j.corsci.2010.05.009.

    Article  CAS  Google Scholar 

  28. Pei HQ, Li M, Wang P, Yao XH, Wen ZX, Yue ZF. The effect of tensile stress on oxidation behavior of nickel-base single crystal superalloy. Corros Sci. 2021;191:109737. https://doi.org/10.1016/j.corsci.2021.109737.

    Article  CAS  Google Scholar 

  29. Jiang H, Dong JX, Zhang MC, Zheng L, Yao ZH. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 °C. Oxid Met. 2015;84(1–2):61. https://doi.org/10.1007/s11085-015-9543-6.

    Article  CAS  Google Scholar 

  30. Barnard BR, Liaw PK, Buchanan RA, Klarstrom DL. Affects of applied stresses on the isothermal and cyclic high-temperature oxidation behavior of superalloys. Mater Sci Eng, A. 2010;527(16–17):3813. https://doi.org/10.1016/j.msea.2010.03.050.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3700401), Shandong Provincial Natural Science Foundation for Youths (No. ZR2022QE234), Zhejiang Provincial Natural Science Foundation (No. LQ21E030002) and the Youth Innovation team Project of Higher Education Institutions in Shandong Province (No. 2022KJ272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, JC., Huang, HL., Wu, CC. et al. Oxidation behavior of Ni-based superalloy GH4738 under tensile stress. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02715-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02715-8

Keywords

Navigation