Skip to main content
Log in

The effect of oxidation on microstructures of a Ni-based single crystal superalloy during heat-treatment and simulated service conditions

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding the oxidation of Ni-based single crystal (SX) superalloys is significantly important because oxidation can damage the microstructure and eventually lead to failure of the alloy. Using advanced scanning/transmission electron microscopy, oxidation effects on the microstructure of a SX superalloy during heat treatment and simulated service (stress/temperature coupling) conditions are systematically investigated in order to reveal oxide microstructures and oxidation mechanisms. Heat treatment in argon results in less weight loss, thinner γ′-free layer and fewer internal oxidation than that treated in air. But the oxide layer structures and influence depths of oxidation in both atmospheres are similar. External tensile stress not only accelerates the oxidation of alloy but also affects the oxide microstructures. Moreover, stress effects on the oxidation microstructure depend on temperature. At 750 °C, Ni–Co oxides are formed on the alloy surface, followed by the inner layer of Ni–Co–Mo–Re–W oxides at the location of original γ phase under stress free condition. As the stress increases, an oxide layer mainly containing Al, Cr, Nb, Mo and Re elements is formed between the above two oxide layers. When temperature increases to 1050 °C, as applied tensile stress increases, the thickness of oxide layer increases but the structure of oxide layer is not obviously changed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge, p 1–5. https://doi.org/10.1017/CBO9780511541285

    Book  Google Scholar 

  2. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 22:361–374. https://doi.org/10.2514/1.18239

    Article  CAS  Google Scholar 

  3. Giamei AF, Tschinkel JG (1976) Liquid metal cooling: a new solidification technique. MTA 7:1427–1434. https://doi.org/10.1007/BF02658829

    Article  Google Scholar 

  4. Yang C, Xia H, Xu Q, Liu B (2021) Multiphase-field simulation of the solution heat treatment process in a Ni-based superalloy. Comput Mater Sci 196:110550. https://doi.org/10.1016/j.commatsci.2021.110550

    Article  CAS  Google Scholar 

  5. Rakoczy Ł, Cygan R (2018) Analysis of temperature distribution in shell mould during thin-wall superalloy casting and its effect on the resultant microstructure. Arch Civ Mech Eng 18:1441–1450. https://doi.org/10.1016/j.acme.2018.05.008

    Article  Google Scholar 

  6. Rettig R, Ritter NC, Müller F, Franke MM, Singer RF (2015) Optimization of the homogenization heat treatment of nickel-based superalloys based on phase-field simulations: numerical methods and experimental validation. Metall Mat Trans A 46:5842–5855. https://doi.org/10.1007/s11661-015-3130-y

    Article  CAS  Google Scholar 

  7. Fuchs GE (2001) Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater Sci Eng, A 300:52–60. https://doi.org/10.1016/S0921-5093(00)01776-7

    Article  Google Scholar 

  8. Ding Q, Bei H, Zhao X, Gao Y, Zhang Z (2020) Processing, microstructures and mechanical properties of a Ni-based single crystal superalloy. Crystals 10:572. https://doi.org/10.3390/cryst10070572

    Article  CAS  Google Scholar 

  9. Su X, Xu Q, Wang R, Xu Z, Liu S, Liu B (2018) Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment. Mater Des 141:296–322. https://doi.org/10.1016/j.matdes.2017.12.020

    Article  CAS  Google Scholar 

  10. Van Sluytman JS, Pollock TM (2012) Optimal precipitate shapes in nickel-base γ–γ′ alloys. Acta Mater 60:1771–1783. https://doi.org/10.1016/j.actamat.2011.12.008

    Article  CAS  Google Scholar 

  11. Erickson GL (1995) A new, third-generation, single-crystal, casting superalloy. JOM 47:36–39. https://doi.org/10.1007/BF03221147

    Article  CAS  Google Scholar 

  12. Li JR, Zhong ZG, Liu SZ, Tang DZ, Wei P, Wei PY, Wu ZT, Huang D, Han M (2000) A low-cost second generation single crystal superalloy DD6. In: Pollock TM, Kissinger RD (eds) Superalloys 2000. Minerals, Warrendale, pp 777–783. https://doi.org/10.7449/2000/Superalloys_2000_777_783

    Chapter  Google Scholar 

  13. Jiang W, Dong J, Wang L, Lou L (2011) Effect of casting modulus on microstructure and segregation in K441 superalloy casting. J Mater Sci Technol 27:831–840. https://doi.org/10.1016/S1005-0302(11)60151-5

    Article  CAS  Google Scholar 

  14. Zhai Y, Chen Y, Zhao Y, Long H, Li X, Deng Q, Lu H, Yang X et al (2021) Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: the interface junction initiated outwards oxidation. Acta Mater 215:116991. https://doi.org/10.1016/j.actamat.2021.116991

    Article  CAS  Google Scholar 

  15. Huang L, Sun XF, Guan HR, Hu ZQ (2006) Effect of rhenium addition on isothermal oxidation behavior of single-crystal Ni-based superalloy. Surf Coat Technol 200:6863–6870. https://doi.org/10.1016/j.surfcoat.2005.10.037

    Article  CAS  Google Scholar 

  16. Suo Y, Zhang Z, Yang X (2016) Residual stress analysis with stress-dependent growth rate and creep deformation during oxidation. J Mater Res 31:2384–2391. https://doi.org/10.1557/jmr.2016.262

    Article  CAS  Google Scholar 

  17. Dong X, Fang X, Feng X, Hwang K-C (2013) Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc 96:44–46. https://doi.org/10.1111/jace.12105

    Article  CAS  Google Scholar 

  18. Akhtar A, Hook MS, Reed RC (2005) On the oxidation of the third-generation single-crystal superalloy CMSX-10. Metall Mater Trans A 36:3001–3017. https://doi.org/10.1007/s11661-005-0073-8

    Article  Google Scholar 

  19. Greene GA, Finfrock CC (2001) Oxidation of inconel 718 in air at high temperatures. Oxid Met 55:505–521. https://doi.org/10.1023/A:1010359815550

    Article  CAS  Google Scholar 

  20. Pei H, Wen Z, Zhang Y, Yue Z (2017) Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 °C. Appl Surf Sci 411:124–135. https://doi.org/10.1016/j.apsusc.2017.03.116

    Article  CAS  Google Scholar 

  21. Pei H, Wen Z, Yue Z (2017) Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050 °C and 1100 °C in air. J Alloy Compd 704:218–226. https://doi.org/10.1016/j.jallcom.2017.02.031

    Article  CAS  Google Scholar 

  22. Shi Z, Li J, Liu S (2012) Isothermal oxidation behavior of single crystal superalloy DD6. Trans Nonferrous Metals Soc China 22:534–538. https://doi.org/10.1016/S1003-6326(11)61210-7

    Article  Google Scholar 

  23. Edmonds IM, Evans HE, Jones CN, Broomfield RW (2008) Intermediate temperature internal oxidation in fourth generation Ru-bearing single-crystal nickel-base superalloys. Oxid Met 69:95–108. https://doi.org/10.1007/s11085-007-9085-7

    Article  CAS  Google Scholar 

  24. Evangelou A, Soady KA, Lockyer S, Gao N, Reed PAS (2018) Oxidation behaviour of single crystal nickel-based superalloys: intermediate temperature effects at 450–550 °C. Mater Sci Technol 34:1679–1692. https://doi.org/10.1080/02670836.2018.1471436

    Article  CAS  Google Scholar 

  25. Akhtar A, Hegde S, Reed RC (2006) The oxidation of single-crystal nickel-based superalloys. JOM 58:37–42. https://doi.org/10.1007/s11837-006-0066-0

    Article  CAS  Google Scholar 

  26. Ma S, Ding Q, Wei X, Zhang Z, Bei H (2022) The effects of alloying elements Cr, Al, and Si on oxidation behaviors of Ni-based superalloys. Materials 15:7352. https://doi.org/10.3390/ma15207352

    Article  CAS  Google Scholar 

  27. Pei H, Li M, Wang P, Yao X, Wen Z, Yue Z (2021) The effect of tensile stress on oxidation behavior of nickel-base single crystal superalloy. Corros Sci 191:109737. https://doi.org/10.1016/j.corsci.2021.109737

    Article  CAS  Google Scholar 

  28. Dye D, Ma A, Reed RC (2008) Numerical modelling of creep deformation in a CMSX-4 single crystal superalloy turbine blade. In: Superalloys 2008. TMS, Berkeley, pp 911–919. https://doi.org/10.7449/2008/Superalloys_2008_911_919.

  29. Ma D (2018) Novel casting processes for single-crystal turbine blades of superalloys. Front Mech Eng 13:3–16. https://doi.org/10.1007/s11465-018-0475-0

    Article  Google Scholar 

  30. Ding Q, Bei H, Yao X, Zhao X, Wei X, Wang J, Zhang Z (2021) Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy. Appl Mater Today 23:101061. https://doi.org/10.1016/j.apmt.2021.101061

    Article  Google Scholar 

  31. Elliott AJ, Pollock TM (2007) Thermal analysis of the bridgman and liquid-metal-cooled directional solidification investment casting processes. Metall Mater Trans A 38:871–882. https://doi.org/10.1007/s11661-006-9085-2

    Article  CAS  Google Scholar 

  32. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815. https://doi.org/10.1038/nmat4709

    Article  CAS  Google Scholar 

  33. Liu L, Zhang J, Ai C (2022) Nickel-based superalloys. In: Caballero FG (ed) Encyclopedia of materials: metals and alloys. Elsevier, Amsterdam, pp 294–304. https://doi.org/10.1016/B978-0-12-803581-8.12093-4

    Chapter  Google Scholar 

  34. Bensch M, Konrad CH, Fleischmann E, Rae CMF, Glatzel U (2013) Influence of oxidation on near-surface γ′ fraction and resulting creep behaviour of single crystal Ni-base superalloy M247LC SX. Mater Sci Eng A 577:179–188. https://doi.org/10.1016/j.msea.2013.04.032

    Article  CAS  Google Scholar 

  35. Pyczak F, Devrient B, Mughrabi H (2004) The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. In: Green KA, Pollock TM (eds) Superalloys 2004. TMS, pp 827–836

  36. Ding Q, Shen Z, Xiang S, Tian H, Li J, Zhang Z (2015) In-situ environmental TEM study of γ′-γ phase transformation induced by oxidation in a nickel-based single crystal superalloy. J Alloy Compd 651:255–258. https://doi.org/10.1016/j.jallcom.2015.07.017

    Article  CAS  Google Scholar 

  37. Fährmann M, Fratzl P, Paris O, Fährmann E, Johnson WC (1995) Influence of coherency stress on microstructural evolution in model Ni–A1–Mo alloys. Acta metall mater 43:1007–1022. https://doi.org/10.1016/0956-7151(94)00337-H

    Article  Google Scholar 

  38. Haftbaradaran H, Gao H, Curtin WA (2010) A surface locking instability for atomic intercalation into a solid electrode. Appl Phys Lett 96:091909. https://doi.org/10.1063/1.3330940

    Article  CAS  Google Scholar 

  39. Evans HE (1995) Stress effects in high temperature oxidation of metals. Int Mater Rev 40:1–40. https://doi.org/10.1179/imr.1995.40.1.1

    Article  CAS  Google Scholar 

  40. Wen J, Cao R, Gao Y (2020) Mysterious failure in load-free superalloys under repeated thermal shocks. Acta Mater 194:276–282. https://doi.org/10.1016/j.actamat.2020.05.002

    Article  CAS  Google Scholar 

  41. Niu W, Gao Y (2021) Concomitant oxidation-diffusion-creep processes for stress generation and suppression of oxide-alloy interfacial instabilities. J Mech Phys Solids 146:104218. https://doi.org/10.1016/j.jmps.2020.104218

    Article  CAS  Google Scholar 

  42. Xu C, Gao W (2000) Pilling-bedworth ratio for oxidation of alloys. Mater Res Innov 3:231–235. https://doi.org/10.1007/s100190050008

    Article  CAS  Google Scholar 

  43. Yu L, Jiang Y, He Y, Liu X, Zhang H (2015) Fabrication of porous nickel–copper alloy with controlled micro-sized pore structure through the Kirkendall effect. Mater Chem Phys 163:355–361. https://doi.org/10.1016/j.matchemphys.2015.07.050

    Article  CAS  Google Scholar 

  44. Yu H-C, Yeon D-H, Van der Ven A, Thornton K (2007) Substitutional diffusion and Kirkendall effect in binary crystalline solids containing discrete vacancy sources and sinks. Acta Mater 55:6690–6704. https://doi.org/10.1016/j.actamat.2007.08.031

    Article  CAS  Google Scholar 

  45. Paul A, van Dal MJH, Kodentsov AA, van Loo FJJ (2004) The Kirkendall effect in multiphase diffusion. Acta Mater 52:623–630. https://doi.org/10.1016/j.actamat.2003.10.007

    Article  CAS  Google Scholar 

  46. Fu LB, Zhang WL, Li SM, Li YT, Li W, Sun J, Wang TG, Jiang SM et al (2022) Oxidation behavior of NiCrAlYSi coatings with Re-based diffusion barriers on two superalloys. Corros Sci 198:110096. https://doi.org/10.1016/j.corsci.2022.110096

    Article  CAS  Google Scholar 

  47. Liu H, Chen W (2007) Cyclic oxidation behaviour of electrodeposited Ni3Al–CeO2 base coatings at 1050 °C. Corros Sci 49:3453–3478. https://doi.org/10.1016/j.corsci.2007.05.002

    Article  CAS  Google Scholar 

  48. Pieraggi B, Dabosi F (1987) High-temperature oxidation of a single crystal Ni-base superalloy. Mater Corros 38:584–590. https://doi.org/10.1002/maco.19870381006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China (No. 51988101), the Key R & D Project of Zhejiang Province (No. 2020C01002), Natural Science Foundation of Zhejiang Province (No. LQ20E010008), National Science and Technology Major Project of China (J2019-III-0008-0051), and National Natural Science Foundation of China (Nos. 52201027 & 91960201).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Formal analysis, Investigation, Writing—original draft, Writing—review & editing. QD: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing—original draft, Writing—review & editing. QZ: Investigation, Writing—Writing—review & editing. XY: Investigation, Writing—Writing—review & editing. XW: Resources, Writing—review & editing. XZ: Resources, Writing—review & editing. YW: Resources, Writing—review & editing. ZZ: Conceptualization, Formal analysis, Resources, Writing—review & editing, Supervision. HB: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing—original draft, Writing—review & editing, Supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Qingqing Ding, Ze Zhang or Hongbin Bei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ding, Q., Zhou, Q. et al. The effect of oxidation on microstructures of a Ni-based single crystal superalloy during heat-treatment and simulated service conditions. J Mater Sci 58, 6343–6360 (2023). https://doi.org/10.1007/s10853-023-08412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08412-8

Navigation