Skip to main content
Log in

Heterogeneous engineering of MnSe@NC@ReS2 core–shell nanowires for advanced sodium-/potassium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been attracting great attentions and widely been exploited due to the abundant sodium/potassium resources. Hence, the preparation of high-powered anode materials for SIBs/PIBs plays a decisive role for the commercial applications of SIBs/PIBs in the future. Manganese selenides are a class of potential anode materials for SIBs/PIBs because of their small band gap and high electrical conductivity. In this work, MnSe and ReS2 core–shell nanowires connecting by polydopamine derived carbon nanotube (MnSe@NC@ReS2) have been successfully synthesized from growing ReS2 nanosheets array on the surface of MnSe@NC nanowires, which present excellent Na+/K+ storage performance. While applied as SIBs anode, the specific capacity of 300 mAh·g−1 was maintained after 400 cycles at the current density of 1.0 A·g−1. Besides, it could also keep 120 mAh·g−1 specific capacity after 900 cycles at 1.0 A·g−1 for the anode of PIBs. These heterogeneous engineering and one-dimensional–two-dimensional (1D-2D) hybrid strategies could provide an ideal strategy for the synthesis of new hetero-structured anode materials with outstanding battery performance for SIBs and PIBs.

Graphical abstract

摘要

钠离子电池 (SIBs)和钾离子电池 (PIBs)因其丰富的钠/钾资源而备受关注和广泛开发。因此,高性能钠/钾离子电池负极材料的制备对它们未来的商业应用具有决定性的作用。硒化锰具有低带隙和高导电性,是钠/钾离子电池极具潜力的负极材料。本文通过在MnSe@NC纳米线表面生长ReS2纳米片阵列,成功合成了以聚多巴胺衍生碳纳米管(MnSe@NC@ReS2)连接的MnSe和ReS2核壳纳米线,具有优异的钠/钾离子存储性能。作为SIBs负极时,在1.0 A.g-1电流密度下,循环 400 次后比容量保持在300 mAh.g-1。作为 PIBs 负极时,在 1.0 A.g-1电流下 900 次循环后的比容量仍可保持 120 mAh.g-1。这种异质工程和一维-二维 (1D–2D) 杂化策略可以为合成具有优异电池性能的钠/钾离子电池新型异质结构负极材料提供理想的合成策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xia P, Li SL, Yuan L, Jing SD, Peng XL, Lu SJ, Zhang YF, Fan HS. Encapsulating CoRu alloy nanocrystals into nitrogen-doped carbon nanotubes to synergistically modify lithium-sulfur batteries separator. J Membr Sci. 2024;694:122395. https://doi.org/10.1016/j.memsci.2023.122395.

    Article  CAS  Google Scholar 

  2. Wan P, Peng X, Dong S, Liu X, Lu S, Zhang Y, Fan H. Synergistic enhancement of chemisorption and catalytic conversion in lithium-sulfur batteries via Co3Fe7/Co5.47N separator mediator. J Colloid Interface Sci. 2024;1(657):757. https://doi.org/10.1016/j.jcis.2023.12.013.

    Article  CAS  Google Scholar 

  3. Gao F, Yue XA, Xu XY, Xu P, Zhang F, Fan HS, Wang ZL, Wu YT, Liu X, Zhang Y. A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium-selenium batteries. Rare Met. 2023;42(8):2670. https://doi.org/10.1007/s12598-023-02273-5.

    Article  CAS  Google Scholar 

  4. Xiong J, Liu X, Xia P, Guo X, Lu S, Lei H, Zhang Y, Fan H. Modified separators boost polysulfides adsorption-catalysis in lithium-sulfur batteries from Ni@Co hetero-nanocrystals into CNT-porous carbon dual frameworks. J Colloid Interface Sci. 2023;652:1417. https://doi.org/10.1016/j.jcis.2023.08.185.

    Article  CAS  PubMed  Google Scholar 

  5. Wan PF, Dong SY, Xiong J, Jin XY, Lu SJ, Zhang YF, Fan HS. Synergistic catalytic conversion and chemisorption of polysulfides from Fe/Fe3C/FeN0.0324 nanocubes modified separator for advanced Li-S batteries. J Colloid Interface Sci. 2023;650:582. https://doi.org/10.1016/j.jcis.2023.07.022.

    Article  CAS  PubMed  Google Scholar 

  6. Sun R, Xu F, Wang C, Lu S, Zhang Y, Fan H. Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: current status and perspectives. Rare Met. 2024;43(5):1906. https://doi.org/10.1007/s12598-023-02563-y.

    Article  CAS  Google Scholar 

  7. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  CAS  Google Scholar 

  8. Xia SX, Yan YH, Sun H, Yang JH, Zheng SY. Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries. Rare Met. 2022;41(5):1496. https://doi.org/10.1007/s12598-021-01945-4.

    Article  CAS  Google Scholar 

  9. Wang MQ, Qin BY, Wu SM, Li YN, Liu CL, Zhang YF, Zeng LX, Fan HS. Interface ion-exchange strategy of MXene@FeIn2S4 hetero-structure for super sodium ion half/full batteries. J Colloid Interface Sci. 2023;650:1457. https://doi.org/10.1016/j.jcis.2023.07.071.

    Article  CAS  PubMed  Google Scholar 

  10. Lin YM, Fan HS, Zhu CZ, Xu J. Metal-organic framework (MOF)-derived selenidation strategy to prepare porous (Zn, Cu)CoSex micro/nanostructures for sodium-ion batteries. Rare Met. 2022;41(12):4104. https://doi.org/10.1007/s12598-022-02095-x.

    Article  CAS  Google Scholar 

  11. Liu S, Li XZ, Huang B, Yang JW, Chen QQ, Li YW, Xiao SH. Controllable construction of yolk-shell Sn-Co@void@C and its advantages in Na-ion storage. Rare Met. 2021;40(9):2392. https://doi.org/10.1007/s12598-021-01729-w.

    Article  CAS  Google Scholar 

  12. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J. 2021;425:130657. https://doi.org/10.1016/j.cej.2021.130657.

    Article  CAS  Google Scholar 

  13. He BH, Cunha J, Hou ZH, Li GY, Yin H. 3D hierarchical self-supporting Bi2Se3-based anode for high-performance lithium/sodium-ion batteries. J Colloid Interface Sci. 2023;650(15):857. https://doi.org/10.1016/j.jcis.2023.07.053.

    Article  CAS  PubMed  Google Scholar 

  14. Qin B, Wang M, Wu S, Xu F, Li Y, Liu C, Zhang Y, Fan H. Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chin Chem Lett. 2023;646:597. https://doi.org/10.1016/j.cclet.2023.108921.

    Article  CAS  Google Scholar 

  15. Zou HY, Fang L, Yu G, Wang D. Nanocrystalline WSe2 excels at high-performance anode for Na storage via a facile one-pot hydrothermal method. Tungsten. 2024;6(1):248. https://doi.org/10.1007/s42864-022-00170-5.

    Article  CAS  PubMed  Google Scholar 

  16. Li ZY, Liu HD, Huang JM, Zhang L. MOF-derived α-MnSe/C composites as anode materials for Li-ion batteries. Ceram Inter. 2019;45:23765. https://doi.org/10.1016/j.ceramint.2019.08.093.

    Article  CAS  Google Scholar 

  17. Liu DH, Li WH, Liang HJ, Lu HY, Guo JZ, Wang JW, Wu XL. Coaxial a-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. J Mater Chem A. 2018;6:15797. https://doi.org/10.1039/C8TA03967D.

    Article  CAS  Google Scholar 

  18. Guo M, Zhu HY, Wan PF, Xu F, Wang CH, Lu SJ, Zhang YF, Fan HS, Xu J. Freestanding and ultra-flexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Adv Fiber Mater. 2022;4:1511. https://doi.org/10.1007/s42765-022-00190-3.

    Article  CAS  Google Scholar 

  19. Li YJ, Fan CY, Li HH, Huang KC, Zhang JP, Wu XL. 3D hierarchical microballs constructed by intertwined MnO@N-doped carbon nanofibers towards superior lithium-storage properties. Chem-Euro J. 2018;24:9606. https://doi.org/10.1002/chem.201800999.

    Article  CAS  Google Scholar 

  20. Hu L, He LQ, Wang X, Shang CQ, Zhou GF. MnSe embedded in carbon nanowires as advanced anode material for sodium ion batteries. Nanotechnol. 2020;31:335402. https://doi.org/10.1088/1361-6528/ab8e78.

    Article  CAS  Google Scholar 

  21. Liu XL, Wang MQ, Qin BY, Zhang YF, Liu ZT, Fan HS. 2D–2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem Eng J. 2023;431:133796. https://doi.org/10.1016/j.cej.2021.133796.

    Article  CAS  Google Scholar 

  22. Li JB, Yan D, Lu T, Yao YF, Pan LK. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J. 2017;325:14. https://doi.org/10.1016/j.cej.2017.05.046.

    Article  CAS  Google Scholar 

  23. Yin H, Qu HQ, Liu Z, Jiang RZ, Li C, Zhu MQ. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy. 2019;58:715. https://doi.org/10.1016/j.nanoen.2019.01.062.

    Article  CAS  Google Scholar 

  24. Ko YN, Choi S, Park S, Kang YC. Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties. Nanoscale. 2014;6(18):10511. https://doi.org/10.1039/C4NR02538E.

    Article  CAS  PubMed  Google Scholar 

  25. Chen LT, Liu ZT, Yang Wu SM, Li YN, Zhang YF, Zeng XL, Fan HS. Micro-mesoporous cobalt phosphosulfide (Co3S4/CoP/NC) nanowires for ultrahigh rate capacity and ultrastable sodium ion battery. J. Colloid Interface Sci. 2024;666:416. https://doi.org/10.1016/j.jcis.2024.04.044.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Qin J, Guo L, Zhao N, Shi C, Liu EZ, He F, Ma L, Li J, He C. Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application as sodium-ion battery anodes. J Mater Chem A. 2016;4(44):17370. https://doi.org/10.1039/C6TA07425A.

    Article  CAS  Google Scholar 

  27. Wang C, Zhang J, Wang X, Lin C, Zhao XS. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv Funct Mater. 2020;30(45):2002629. https://doi.org/10.1002/adfm.202002629.

    Article  CAS  Google Scholar 

  28. Xu F, Li SL, Jing SD, Peng XL, Yuan L, Lu SJ, Zhang YF, Fan HS. Cobalt-vanadium sulfide yolk-shell nanocages from surface etching and ion-exchange of ZIF-67 for ultra-high rate-capability sodium ion battery. J. Colloid Interface Sci. 2024;660:907. https://doi.org/10.1016/j.jcis.2024.01.138.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Wang R, Guo P, Liu X, Hu Y, Xu Z, Liu Y, Cao L, Huang J, Kajiyoshi K. Realizing fast charge diffusion in oriented iron carbodiimide structure for high-rate sodium-ion storage performance. ACS Nano. 2021;15(4):6410. https://doi.org/10.1021/acsnano.0c08314.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Zeng YP, Ling CS, Wang L, Wang ZY, Fan TE, Wang H, Xiao JR, Li XY, Qu BH. Boosting fast sodium ion storage by synergistic effect of heterointerface engineering and nitrogen doping porous carbon nanofibers. Small. 2022;18:2107504. https://doi.org/10.1002/smll.202107514.

    Article  CAS  Google Scholar 

  31. Wu SM, Yang W, Liu ZT, Li YN, Fan HS, Zhang YF, Zeng XL. Organic polymer coating induced multiple heteroatom-doped carbon framework confined Co1-xS@NPSC core-shell hexapod for advanced sodium/potassium ion batteries. J. Colloid Interface Sci. 2024;660:97. https://doi.org/10.1016/j.jcis.2024.01.085.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52101243), the Natural Science Foundation of Guangdong Province (No. 2023A1515012619) and the Science and Technology Planning Project of Guangzhou (No. 202102010373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Fei Zhang or Hao-Sen Fan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1432 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, SJ., Lin, JY., Wang, CH. et al. Heterogeneous engineering of MnSe@NC@ReS2 core–shell nanowires for advanced sodium-/potassium-ion batteries. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02650-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02650-8

Keywords

Navigation