Skip to main content

Advertisement

Log in

A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium–selenium batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Selenium (Se) is a promising cathode material for lithium batteries due to its high volumetric energy density (2528 Wh·L−1). However, its practical application is restricted by rapid capacity fading resulting from the shuttle effect and slow reaction kinetics. Herein, a N/Co co-doped three-dimensional porous carbon (Co-NC) is prepared and used as Se host for lithium–selenium batteries (LSeBs). Co-NC displays a high specific surface area of 1201 m2·g−1 which benefits from N and Co doping. The N and Co not only enhance the electrical conductivity of porous carbon but also possess an adsorption effect on polyselenide. Thus, Se/Co-NC electrode exhibits excellent cycling performance (a stable specific capacity of 480 mAh·g−1 after 200 cycles at 1.0C with a much low-capacity decay of 0.028% per cycle) and outstanding rate performance (a high specific capacity of 414 mAh·g−1 at 5.0C). This work inspires highly stable Se cathode design for LSeBs.

Graphical abstract

摘要

硒(Se)由于其高的体积能量密度(2528 Wh·L-1)而被认为是一种很有前途的锂电池正极材料。然而,穿梭效应和缓慢的反应动力学导致的容量快速衰减严重限制了它的实际应用。本文制备了一种N/Co共掺杂的三维多孔碳(Co-NC),并用作锂硒电池(LSeBs)的Se主体。得益于N和Co掺杂,Co-NC显示出1201 m2·g−1的高比表面积。同时,N和Co不仅增强了多孔碳的导电性,而且对多硒化物具有吸附作用。因此,Se/Co-NC电极表现出优异的循环性能(在1.0C下循环200次后,可逆比容量可以达到480 mAh·g−1,平均每个循环的容量衰减率低至0.028%)和出色的倍率性能(5.0C时的比容量为414 mAh·g−1)。这项工作为高性能锂硒电池正极的设计提供了思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao DC, Ge-Zhang SJ, Zhang Z, Tang H, Xu YY, Gao F, Xu XY, Liu SP, Zhou J, Wang ZL, Wu YT, Liu X, Zhang Y. Three-dimensional honeycomb-like carbon as sulfur host for sodium-sulfur batteries without the shuttle effect. ACS Appl Mater Interfaces. 2022;14(49):54662. https://doi.org/10.1021/acsami.2c13862.

    Article  CAS  Google Scholar 

  2. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J. 2021;425:130657. https://doi.org/10.1016/j.cej.2021.130657.

    Article  CAS  Google Scholar 

  3. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225. https://doi.org/10.13373/j.cnki.cjrm.XY18040037.

    Article  Google Scholar 

  4. Liang G, Li X, Wang Y, Yang S, Huang Z, Yang Q, Wang D, Dong B, Zhu M, Zhi C. Building durable aqueous K-ion capacitors based on MXene family. Nano Res Energy. 2022;1:e912002. https://doi.org/10.26599/NRE.2022.9120002.

    Article  Google Scholar 

  5. Yang D, Zhi R, Ruan D, Yan W, Zhu Y, Chen Y, Fu L, Holze R, Zhang Y, Wu Y, Wang X. A multifunctional separator for high-performance lithium-sulfur batteries. Electrochim Acta. 2020;334:135486. https://doi.org/10.1016/j.electacta.2019.135486.

    Article  CAS  Google Scholar 

  6. Chen B, Wu W, Li C, Wang Y, Zhang Y, Fu L, Zhu Y, Zhang L, Wu Y. Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Sci Rep. 2019;9(1):1. https://doi.org/10.1038/s41598-019-41769-y.

    Article  CAS  Google Scholar 

  7. Ji X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience. 2021;1:99. https://doi.org/10.1016/j.esci.2021.10.004.

    Article  Google Scholar 

  8. Yang MH, Duan CX, Zeng XJ, Li JJ, Liu CY, Zeng LJ, Zhang Y, Wang K, Xi HX. Facile fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks for enhanced toluene adsorption capacity. Rare Met. 2021;40(2):471. https://doi.org/10.1007/s12598-020-01455-9.

    Article  CAS  Google Scholar 

  9. Wang M, Liu X, Qin B, Li Z, Zhang Y, Yang W, Fan H. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2022.138508.

    Article  Google Scholar 

  10. Huang Y, Yang H, Zhang Y, Zhang Y, Wu Y, Tian M, Chen P, Trout R, Ma Y, Wu T, Wu Y, Liu N. A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J Mater Chem A. 2019;7:11250. https://doi.org/10.1039/C9TA02037C.

    Article  CAS  Google Scholar 

  11. Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat Energy. 2022;7(4):312. https://doi.org/10.1038/s41560-022-01001-0.

    Article  CAS  Google Scholar 

  12. Xue H, Gong H, Yamauchi Y, Sasaki T, Ma R. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res Energy. 2022;1:e9120007. https://doi.org/10.26599/NRE.2022.9120007.

    Article  Google Scholar 

  13. Wang L, Wang T, Peng L, Wang Y, Zhang M, Zhou J, Chen M, Cao J, Fei H, Duan X, Zhu J, Duan X. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl Sci Rev. 2022;9(3):nwab050. https://doi.org/10.1093/nsr/nwab050.

    Article  CAS  Google Scholar 

  14. Wang T, Zhang Q, Zhong J, Chen M, Deng H, Cao J, Wang L, Peng L, Zhu J, Lu B. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv Energy Mater. 2021;11(16):2100448. https://doi.org/10.1002/aenm.202100448.

    Article  CAS  Google Scholar 

  15. Zhou J, Chen M, Wang T, Li S, Zhang Q, Zhang M, Xu H, Liu J, Liang J, Zhu J, Duan X. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li−Se batteries. iScience. 2020;23(3):100919. https://doi.org/10.1016/j.isci.2020.100919.

    Article  CAS  Google Scholar 

  16. Wang A, Chen Y, Liu L, Liu X, Wang Z, Zhang Y. Sulfur nanoparticles/Ti3C2Tx MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries. Dalton Trans. 2021;50(16):5574. https://doi.org/10.1039/D1DT00381J.

    Article  CAS  Google Scholar 

  17. Liu S, Zhou Y, Zhou J, Tang H, Gao F, Zhao D, Ren J, Wu Y, Wang Z, Luo Y, Liu X, Zhang Y. Ti3C2Tx MXenes-based flexible materials for electrochemical energy storage and solar energy conversion. Nanophotonics. 2022;11(14):3215. https://doi.org/10.1515/nanoph-2022-0228.

    Article  CAS  Google Scholar 

  18. Zhu J, He Q, Liu Y, Key J, Nie S, Wu M, Shen PK. Three-dimensional, hetero-structured, Cu3P@C nanosheets with excellent cycling stability as Na-ion battery anode material. J Mater Chem A. 2019;7(28):16999. https://doi.org/10.1039/C9TA04035H.

    Article  CAS  Google Scholar 

  19. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  20. Zhang T, Zhang L, Hou Y. MXenes: synthesis strategies and lithium-sulfur battery applications. eScience. 2022;2:164. https://doi.org/10.1016/j.esci.2022.02.010.

    Article  CAS  Google Scholar 

  21. Liu X, Xu F, Li Z, Liu Z, Yang W, Zhang Y, Fan H, Yang HY. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev. 2022;464:214544. https://doi.org/10.1016/j.ccr.2022.214544.

    Article  CAS  Google Scholar 

  22. Zhou W, Li T, Yuan M, Li B, Zhong S, Li Z, Liu X, Zhou J, Wang Y, Cai H, Dang ZM. Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 2021;42:1. https://doi.org/10.1016/j.ensm.2021.07.014.

    Article  CAS  Google Scholar 

  23. Wei P, Zhu J, Qiu Y, Wang G, Xu X, Ma S, Shen PK, Wu XL, Yamauchi Y. One-dimensional core-shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chem Sci. 2021;12(45):15054. https://doi.org/10.1039/D1SC04163K.

    Article  CAS  Google Scholar 

  24. Chen W, Huang J, He ZC, Ji X, Zhang YF, Sun HL, Wang K, Su ZW. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Sep Purif Technol. 2021;277:119461. https://doi.org/10.1016/j.seppur.2021.119461.

    Article  CAS  Google Scholar 

  25. Li H, Gao R, Chen B, Zhou C, Shao F, Wei H, Han Z, Hu N, Zhou G. Vacancy-rich MoSSe with sulfiphilicity–lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 2022;22(12):4999. https://doi.org/10.1021/acs.nanolett.2c01779.

    Article  CAS  Google Scholar 

  26. Li J, Zhuang N, Xie J, Li X, Zhuo W, Wang H, Na JB, Li X, Yamauchi Y, Mai W. K-Ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv Energy Mater. 2019;10(5):1903455. https://doi.org/10.1002/aenm.201903455.

    Article  CAS  Google Scholar 

  27. Gao F, Mei B, Xu X, Ren J, Zhao D, Zhang Z, Wang Z, Wu Y, Liu X, Zhang Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem Eng J. 2022;448:137742. https://doi.org/10.1016/j.cej.2022.137742.

    Article  CAS  Google Scholar 

  28. Duan C, Liang K, Lin J, Li J, Li L, Kang L, Yu Y, Xi H. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: a review. Sci China Mater. 2021;65(2):298. https://doi.org/10.1007/s40843-021-1910-2.

    Article  CAS  Google Scholar 

  29. Xie J, Li J, Li X, Lei H, Zhuo W, Li X, Hong G, Hui KN, Pan L, Mai W. Ultrahigh, “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021;3(2):791. https://doi.org/10.31635/ccschem.020.202000203.

    Article  CAS  Google Scholar 

  30. Bo R, Zhang F, Bu S, Nasiri N, Di Bernardo I, Tran-Phu T, Shrestha A, Chen H, Taheri M, Qi S. One-step synthesis of porous transparent conductive oxides by hierarchical self-assembly of aluminum-doped ZnO nanoparticles. ACS Appl Mater Interfaces. 2020;12:9589. https://doi.org/10.1021/acsami.9b19423.

    Article  CAS  Google Scholar 

  31. Zhu J, Wei P, Zeng Q, Wang G, Wu K, Ma S, Shen PK, Wu XL. MnS@N, S co-doped carbon core/shell nanocubes: sulfur-bridged bonds enhanced Na-storage properties revealed by in situ Raman spectroscopy and transmission electron microscopy. Small. 2020;16(45):2003001. https://doi.org/10.1002/smll.202003001.

    Article  CAS  Google Scholar 

  32. Xu L, Guo W, Zeng L, Xia X, Wang Y, Xiong P, Chen Q, Zhang J, Wei M, Qian Q. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem Eng J. 2021;419:129607. https://doi.org/10.1016/j.cej.2021.129607.

    Article  CAS  Google Scholar 

  33. Zhao D, Zhang Z, Ren J, Xu Y, Xu X, Zhou J, Gao F, Tang H, Liu S, Wang Z, Wang D, Wu Y, Liu X, Zhang Y. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem Eng J. 2023;451:138882. https://doi.org/10.1016/j.cej.2022.138882.

    Article  CAS  Google Scholar 

  34. Li X, Li Y, Xie S, Zhou Y, Rong J, Dong L. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J. 2022;427:131799. https://doi.org/10.1016/j.cej.2021.131799.

    Article  CAS  Google Scholar 

  35. Zhu J, Wu Q, Key J, Wu M, Shen PK. Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: one-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Mater. 2018;15:75. https://doi.org/10.1016/j.ensm.2018.03.014.

    Article  Google Scholar 

  36. Wang Y, Liu J, Chen X, Kang B, Wang HE, Xiong P, Chen Q, Wei M, Li N, Qian Q, Zeng L. Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon. 2022;189:46. https://doi.org/10.1016/j.carbon.2021.12.051.

    Article  CAS  Google Scholar 

  37. Liu X, Mo J, Wu W, Song H, Nie S. Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Appl Catal B Environ. 2022;312:121422. https://doi.org/10.1016/j.apcatb.2022.121422.

    Article  CAS  Google Scholar 

  38. Guo YM, Zhang LJ, XiLi DG, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  39. Safaei J, Wang G. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res Energy. 2022;1:e9120008. https://doi.org/10.26599/NRE.2022.9120008.

    Article  Google Scholar 

  40. Ren J, Wang Z, Xu P, Wang C, Gao F, Zhao D, Liu S, Yang H, Wang D, Niu C, Zhu Y, Wu Y, Liu X, Wang Z, Zhang Y. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-micro Lett. 2022;14:5. https://doi.org/10.1007/s40820-021-00758-5.

    Article  CAS  Google Scholar 

  41. Mo J, Liu Y, Fu Q, Cai C, Lu Y, Wu W, Zhao Z, Song H, Wang S, Nie S. Triboelectric nanogenerators for enhanced degradation of antibiotics via external electric field. Nano Energy. 2022;93:106842. https://doi.org/10.1016/j.nanoen.2021.106842.

    Article  CAS  Google Scholar 

  42. Wang C, Wang Z, Zhao D, Ren J, Liu S, Tang H, Xu P, Gao F, Yue X, Yang H, Niu C, Chu W, Wang D, Liu X, Wang Z, Wu Y, Zhang Y. Core-shell Co2VO4/carbon composite anode for highly stable and fast-charging sodium-ion batteries. ACS Appl Mater Interfaces. 2021;13(46):55020. https://doi.org/10.1021/acsami.1c16035.

    Article  CAS  Google Scholar 

  43. Zhou J, Yang J, Xu Z, Zhang T, Chen Z, Wang J. A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. J Mater Chem A. 2017;5(19):9350. https://doi.org/10.1039/C7TA01564J.

    Article  CAS  Google Scholar 

  44. Li X, Liang H, Qin B, Wang M, Zhang Y, Fan H. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci. 2022;625:41. https://doi.org/10.1016/j.jcis.2022.05.155.

    Article  CAS  Google Scholar 

  45. Dong WD, Li CF, Li HY, Wu L, Mohamed HSH, Hu ZY, Chen LH, Li Y, Su BL. The chain-mail Co@C electrocatalyst accelerating one-step solid-phase redox for advanced Li−Se batteries. J Mater Chem A. 2022;10(14):8059. https://doi.org/10.1039/D1TA10193E.

    Article  CAS  Google Scholar 

  46. Xie J, Li X, Lai H, Zhao Z, Li J, Zhang W, Xie W, Liu Y, Mai W. A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew Chem Int Ed. 2019;58(41):14882. https://doi.org/10.1002/anie.201908542.

    Article  CAS  Google Scholar 

  47. Rao P, Wu D, Wang T, Li J, Deng P, Chen Q, Shen Y, Chen Y, Tian X. Single atomic cobalt catalyst for efficient oxygen reduction reaction. eScience. 2022;2:399. https://doi.org/10.1016/j.esci.2022.05.004.

    Article  Google Scholar 

  48. Xie S, Li Y, Li X, Zhou Y, Dang Z, Rong J, Dong L. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano Micro Lett. 2021;14:39. https://doi.org/10.1007/s40820-021-00783-4.

    Article  CAS  Google Scholar 

  49. Zhao D, Jiang S, Yu S, Ren J, Zhang Z, Liu S, Liu X, Wang Z, Wu Y, Zhang Y. Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon. 2023;201(5):864. https://doi.org/10.1016/j.carbon.2022.09.075.

    Article  CAS  Google Scholar 

  50. Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y. Si/C Composites as negative electrode for high energy lithium ion batteries. Chin J Chem. 2017;35(1):21. https://doi.org/10.1002/cjoc.201600663.

    Article  CAS  Google Scholar 

  51. Zhang M, He YX, Xu HJ, Ma C, Liang JF, Wang YY, Zhu J. Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries. Rare Met. 2022;41(3):814. https://doi.org/10.1007/s12598-021-01863-5.

    Article  CAS  Google Scholar 

  52. Yan WQ, Gao XW, Jin X, Liang SS, Xiong XS, Liu ZC, Wang ZG, Chen YH, Fu LJ, Zhang Y, Zhu YS, Wu YP. Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl Mater Interfaces. 2021;13(12):14258. https://doi.org/10.1021/acsami.1c00182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project (No. 2018YFE0124800), the Research Project of Education Department of Jiangxi Province (No. GJJ190310) and Natural Science Foundation of Jiangxi Province (No.20212BAB204006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Liu or Yi Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Yue, XA., Xu, XY. et al. A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium–selenium batteries. Rare Met. 42, 2670–2678 (2023). https://doi.org/10.1007/s12598-023-02273-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02273-5

Keywords

Navigation