Skip to main content
Log in

Regulating electrochemical performances of lithium battery by external physical field

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium batteries have always played a key role in the field of new energy sources. However, non-controllable lithium dendrites and volume dilatation of metallic lithium in batteries with lithium metal as anodes have limited their development. Recently, a large number of studies have shown that the electrochemical performances of lithium batteries can be enhanced through the regulation of external physical fields. Especially, it significantly hinders the growth of lithium dendrites and promoting the reaction kinetics. This review summarizes recent innovations in the investigation of various physical fields of lithium batteries. The application of magnetic field in the synthesis of lithium battery electrode materials is introduced. The influence factors and regulation mechanism of various physical fields on the electrochemical performance of lithium batteries are reviewed emphatically. In addition, the current research status and existing challenges, along with future directions for the evolution of lithium batteries, are minutely discussed and prospected. New strategies for the further evolution of lithium batteries have also been provided.

Graphical abstract

摘要

锂电池在新能源领域一直发挥着关键的作用, 但是目前以锂金属为负极的电池中无法控制的锂枝晶和金属锂体积膨胀等问题一直限制其发展. 最近, 有大量的研究表明, 通过外加物理场的调控可以改善锂电池的电化学性能, 特别是在抑制锂枝晶的生长和促进反应动力学上发挥着巨大的作用. 本综述总结了多种物理场在锂电池中应用的最新进展. 介绍了磁场在锂电池电极材料制备中的应用, 着重综述了多种物理场对锂电池的性能影响因素和调控机理. 并且对目前的研究现状和存在的问题以及未来的锂电池发展方向进行了讨论与展望. 这篇综述将为锂电池的发展提供新的策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Reproduced with permission from Ref. [38]. Copyright 2022, Elsevier; g cyclic stability at 0.5C of 1D-Fe3O4@C/S, Fe3O4@C/S and Super P/S electrodes. Reproduced with permission from ref. [49]. Copyright 2021, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [55]. Copyright 2019, American Chemical Society. c Cross-sectional SEM images of reference and d aligned Gt electrodes; e Nyquist plots of Gt-G and Gt-N containing cells after 70 cycles-charged state (lithiated) and f discharged state (delithiated) along with simulated EIS data. Reproduced with permission from Ref. [39]. Copyright 2022, American Chemical Society. g Schematic diagram of producing Ti3C2Tx electrodes. Reproduced with permission from Ref. [56]. Copyright 2021, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [40]. Copyright 2021, The Electrochemical Society

Fig. 4

Reproduced with permission from Ref. [35]. Copyright 2019, Wiley–VCH GmbH

Fig. 5

Reproduced with permission from Ref. [80]. Copyright 2020, Elsevier. c Schematic diagram of electronic transition of Co from a low spin state to a high spin state; d Gibbs free energy profiles and adsorption conformation of LiPS species on CoS2; e galvanostatic charging and discharging plots. Reproduced with permission from Ref. [36]. Copyright 2022, Wiley–VCH GmbH

Fig. 6

Reproduced with permission from Ref. [23]. Copyright 2022, Wiley–VCH GmbH. b Schematic illustration of interaction between magnetic field and NiO/FNi under illumination. Reproduced with permission from Ref. [95]. Copyright 2021, Wiley–VCH GmbH. c Design diagram of ICS. Reproduced with permission from Ref. [98]. Copyright 2020, Wiley–VCH GmbH. d Energy-level diagram. Reproduced with permission from Ref. [97]. Copyright 2023, American Chemical Society. e Cyclic performance of photoinduced Li–CO2 batteries with different bending angles of 0°, 8° and 180°. Reproduced with permission from Ref. [98]. Copyright 2020, Wiley–VCH GmbH. f TiO2 and Au@TiO2 LSV curves with and without illumination. Reproduced with permission from Ref. [22]. Copyright 2022, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [41]. Copyright 2021, Nature Publishing Group

Fig. 8

Reproduced with permission from Ref. [126]. Copyright 2022, The Electrochemical Society; d AG+SBR, e NG+SBR and f NG+PAA (SBR: styrene butadiene rubber; PAA: polyacrylic acid) electrode cells under different preload force. Reproduced with permission from Ref. [127]. Copyright 2021, Elsevier; gi SEM cross sections with magnifications of 1000 × . Reproduced with permission from Ref. [128]. Copyright 2022, Elsevier

Fig. 9

Reproduced with permission from Ref. [136]. Copyright 2022, Elsevier. SEM images of cross-sectional morphology of Li anode: g bare Li, h normal charging, and i 1:1 pulsed charging. Reproduced with permission from Ref. [139]. Copyright 2022, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [143]. Copyright 2022, Elsevier

Similar content being viewed by others

References

  1. Schlögl R. Chemical energy storage enables the transformation of fossil energy systems to sustainability. Green Chem. 2021;23(4):1584. https://doi.org/10.1039/d0gc03171b.

    Article  CAS  Google Scholar 

  2. Yin YQ, Liu TT, Liu D, Wang Z, Deng QB, Qu DY, Xie ZZ, Tang HL, Li JS. Confining nano-sized platinum in nitrogen doped ordered mesoporous carbon: an effective approach toward efficient and robust hydrogen evolution electrocatalyst. J Colloid Interface Sci. 2018;530:595. https://doi.org/10.1016/j.jcis.2018.06.096.

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, An CH, Qin CL, Gomaa H, Deng QB, Wu S, Hu N. Noble metal-based catalysts with core-shell structure for oxygen reduction reaction: progress and prospective. Nanomaterials. 2022;12(14):2480. https://doi.org/10.3390/nano12142480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang ZJ, Liu YS, Gomaa H, Chen YL, Zhao YF, Mumyatov AV, Troshin PA, Deng QB, Hu N. Synchronously producing H2 and purifying methyl orange-polluted water through the reaction of an al-gainsn alloy plate and H2O. Langmuir. 2023;39(18):6366. https://doi.org/10.1021/acs.langmuir.3c00048.

    Article  CAS  PubMed  Google Scholar 

  5. Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges. Chem Rec. 2022;22(12):202200181. https://doi.org/10.1002/tcr.202200181.

    Article  CAS  Google Scholar 

  6. Ahsan Z, Cai ZF, Wang S, Wang HC, Ma YZ, Song GS, Zhang SH, Yang WD, Imran M, Wen C. Enhanced stability and electrochemical properties of lanthanum and cerium co-modified LiVOPO4 cathode materials for Li-ion batteries. J Rare Earths. 2023;41(10):1590. https://doi.org/10.1016/j.jre.2022.09.020.

    Article  CAS  Google Scholar 

  7. Shuang M, Qing LR, Xue CL, Gui JZ, Die Y, Ling QH, Yu MH, Xing XG. Insight into lithium–sulfur batteries performance enhancement: from metal nanoparticles to metal nanoclusters to single metal atoms. Tungsten. 2023. https://doi.org/10.1007/s42864-023-00248-8.

    Article  Google Scholar 

  8. Cha H, Kim J, Lee Y, Cho J, Park M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small. 2018;14(43):1702989. https://doi.org/10.1002/smll.201702989.

    Article  CAS  Google Scholar 

  9. An CH, Li YQ, Wu S, Gao LX, Lin LY, Deng QB, Hu N. Matched MnO@C anode and porous carbon cathode for Li-ion hybrid supercapacitors. Rare Met. 2023;42(6):1959. https://doi.org/10.1007/s12598-022-02233-5.

    Article  CAS  Google Scholar 

  10. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023;42(9):2868. https://doi.org/10.1007/s12598-023-02303-2.

    Article  CAS  Google Scholar 

  11. Zhang K, Li ZX, Li X, Chen XY, Tang HQ, Liu XH, Wang CY, Ma JM. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Met. 2022;42(3):740. https://doi.org/10.1007/s12598-022-02107-w.

    Article  CAS  Google Scholar 

  12. Xie ZJ, Zhang LM, Li L, Deng QB, Jiang GX, Wang JQ, Cao BQ, Wang YJ. A ternary FeS2/Fe7S8@nitrogen-sulfur co-doping reduced graphene oxide hybrid towards superior-performance lithium storage. Prog Nat Sci Mater Int. 2021;31(2):207. https://doi.org/10.1016/j.pnsc.2021.01.003.

    Article  CAS  Google Scholar 

  13. Yu G, Bing FC, Jia JW, Zhao YS, Qiang C, Yi DD, Xiao PH, Wen BH. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene. Rare Met. 2022;41(10):3391. https://doi.org/10.1007/s12598-022-02044-8.

    Article  CAS  Google Scholar 

  14. Li ZL, Liu TT, Duan CQ, Gu YY, Zhang ZJ. Application and research progress of copper current collector in alkali metal batteries. Copper Engineering. 2023(4):1. https://doi.org/10.3390/polym11040728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng LL, Zhang ZJ, Qiu WJ, Wei JK, Fang ZH, Deng QB, Guo W, Liu D, Xie ZZ, Qu D, Tang HL, Li JS, Hu N. Multifunctional polypropylene separator via cooperative modification and its application in the lithium–sulfur battery. Langmuir. 2020;36(37):11147. https://doi.org/10.1021/acs.langmuir.0c02216.

    Article  CAS  PubMed  Google Scholar 

  16. Qiu WJ, An CH, Yan YW, Xu J, Zhang ZJ, Guo W, Wang Z, Zheng ZJ, Wang ZB, Deng QB, Li JS. Suppressed polysulfide shuttling and improved Li+ transport in Li–S batteries enabled by NbN modified PP separator. J Power Sources. 2019;423:98. https://doi.org/10.1016/j.jpowsour.2019.03.070.[

    Article  CAS  Google Scholar 

  17. Chen JX, Zhang GQ, Qin XY, Lin K, Yang ZJ, Liang GM, Xia Y, Zhang GB, Wu HK, Cai QC, Lin H, Li BH. Lithium-induced graphene layer containing Li3P alloy phase to achieve ultra-stable electrode interface for lithium metal anode. Rare Met. 2023;43:562. https://doi.org/10.1007/s12598-023-02433-7.

    Article  CAS  Google Scholar 

  18. Qi MP, Xie LL, Han Q, Zhu LM, Chen LB, Cao XY. An overview of the key challenges and strategies for lithium metal anodes. J Energy Storage. 2022;47:103641. https://doi.org/10.1016/j.est.2021.103641.

    Article  Google Scholar 

  19. Yuan HD, Ding XF, Liu TF, Nai JW, Wang Y, Liu YJ, Liu CT, Tao XY. A review of concepts and contributions in lithium metal anode development. Mater Today. 2022;53:173. https://doi.org/10.1016/j.mattod.2022.01.015.

    Article  CAS  Google Scholar 

  20. Si CM, Ye J, Zhi WD, Yan D, Ruo XC, Xue MZ, Chang HX, Meng Y, Wen LC. Transition metals for stabilizing lithium metal anode: advances and perspectives. Tungsten. 2024;6(1):212. https://doi.org/10.1007/s42864-023-00231-3.

    Article  Google Scholar 

  21. Li QW, Liu YL, Zhang Z, Chen JJ, Yang ZL, Deng QB, Mumyatov AV, Troshin PA, He G, Hu N. Construction of dynamic alloy interfaces for uniform Li deposition in Li-metal batteries. Energy Environ Mater. 2023. https://doi.org/10.1002/eem2.12618.

    Article  Google Scholar 

  22. Guan DH, Wang XX, Li F, Zheng LJ, Li ML, Wang HF, Xu JJ. All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano. 2022;16(8):12364. https://doi.org/10.1021/acsnano.2c03534.

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Li ML, Wang HF, Wang XX, Zheng LJ, Guan DH, Chang LM, Xu JJ, Wang Y. Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li–O2 batteries. Adv Mater. 2022;34(10):2107826. https://doi.org/10.1002/adma.202107826.

    Article  CAS  Google Scholar 

  24. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

    Article  Google Scholar 

  25. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853. https://doi.org/10.1002/adma.201504526.

    Article  CAS  PubMed  Google Scholar 

  26. Yan K, Lu ZD, Lee HW, Xiong F, Hsu PC, Li YZ, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1(3):16010. https://doi.org/10.1038/nenergy.2016.10.

    Article  CAS  Google Scholar 

  27. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Article  Google Scholar 

  28. Eftekhari A, Ramanujam B. In pursuit of catalytic cathodes for lithium-oxygen batteries. J Mater Chem A. 2017;5(17):7710. https://doi.org/10.1039/c7ta01124e.

    Article  CAS  Google Scholar 

  29. Zhang B, Ma JP, Zhao Y, Li T, Yang JL, Zhang ZL, Wei SZ, Zhou GM. Design and application of copper/lithium composite anodes for advanced lithium metal batteries. Rare Met. 2024;43(3):942. https://doi.org/10.1007/s12598-023-02477-9.

    Article  CAS  Google Scholar 

  30. Deng QB, Huang R, Shao LH, Mumyatov AV, Troshin PA, An CH, Wu S, Gao LX, Yang B, Hu N. Atomic understanding of the strain-induced electrocatalysis from DFT calculation: progress and perspective. Phys Chem Chem Phys. 2023;25(18):12565. https://doi.org/10.1039/d3cp01077e.

    Article  CAS  PubMed  Google Scholar 

  31. Deng QB, Gopal V, Weissmüller J. Less noble or more noble: how strain affects the binding of oxygen on gold. Ang Chem. 2015;127(44):13173. https://doi.org/10.1002/ange.201504715.

    Article  Google Scholar 

  32. Deka Boruah B, Mathieson A, Park SK, Zhang X, Wen B, Tan LF, Boies A, De Volder M. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Adv Energy Mater. 2021;11(13):202100115. https://doi.org/10.1002/aenm.202100115.

    Article  CAS  Google Scholar 

  33. Liu SP, Qiu XC, Guo J, Chen PA, Liu Y, Wei H, Xia JN, Xie HH, Hu YY. Efficient p-doping of P3HT for hole transporting materials in perovskite solar cells. Rare Met. 2022;41(8):2575. https://doi.org/10.1007/s12598-022-01982-7.

    Article  CAS  Google Scholar 

  34. Shen K, Xu XJ, Tang YP. Recent progress of magnetic field application in lithium-based batteries. Nano Energy. 2022;92:106703. https://doi.org/10.1016/j.nanoen.2021.106703.

    Article  CAS  Google Scholar 

  35. Shen K, Wang Z, Bi XX, Ying Y, Zhang D, Jin CB, Hou GY, Cao HZ, Wu LK, Zheng GQ, Tang YP, Tao XY, Lu J. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater. 2019;9(20):1900260. https://doi.org/10.1002/aenm.201900260.

    Article  CAS  Google Scholar 

  36. Zhang CY, Zhang C, Sun GW, Pan JL, Gong L, Sun GZ, Biendicho JJ, Balcells L, Fan XL, Morante JR, Zhou JY, Cabot A. Spin effect to promote reaction kinetics and overall performance of lithium–sulfur batteries under external magnetic field. Angew Chem Int Ed Engl. 2022;61(49):202211570. https://doi.org/10.1002/anie.202211570.

    Article  CAS  Google Scholar 

  37. Wang A, Deng QB, Deng LJ, Guan XZ, Luo JY. Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes. Adv Funct Mater. 2019;29(25):1902630. https://doi.org/10.1002/adfm.201902630.

    Article  CAS  Google Scholar 

  38. Wei YY, Ying L, Ma XH, Zhou L, Zi ZF, Dai JM. Synthesis and energy storage characteristics of MnO microchains induced by high magnetic field. J Alloys Comp. 2022;926:166774. https://doi.org/10.1016/j.jallcom.2022.166774.

    Article  CAS  Google Scholar 

  39. Bayindir O, Sohel IH, Erol M, Duygulu O, Ates MN. Controlling the crystallographic orientation of graphite electrodes for fast-charging Li-ion batteries. ACS Appl Mater Interfaces. 2022;14(1):891. https://doi.org/10.1021/acsami.1c19735.

    Article  CAS  PubMed  Google Scholar 

  40. Kim C, Yang Y, Lopez DH. Crystal alignment technology of electrode material for enhancing electrochemical performance in lithium-ion battery. J Electrochemical Soc. 2021;168(4):040502. https://doi.org/10.1149/1945-7111/abf17c.

    Article  CAS  Google Scholar 

  41. Fang CC, Lu BY, Pawar G, Zhang MH, Cheng DY, Chen SR, Ceja M, Doux JM, Musrock H, Cai M, Liaw B, Meng YS. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat Energy. 2021;6(10):987. https://doi.org/10.1038/s41560-021-00917-3.

    Article  CAS  Google Scholar 

  42. Li RH, Li W, Singh A, Ren DS, Hou ZC, Ouyang MG. Effect of external pressure and internal stress on battery performance and lifespan. Energy Storage Mater. 2022;52:395. https://doi.org/10.1016/j.ensm.2022.07.034.

    Article  Google Scholar 

  43. Lu DS, Li WS, Jiang X, Tan CL, Zeng RH. Magnetic field assisted chemical reduction preparation of Co–B alloys as anode materials for alkaline secondary battery. J Alloys Comp. 2009;485(1):621. https://doi.org/10.1016/j.jallcom.2009.06.060.

    Article  CAS  Google Scholar 

  44. Wang YR, Zhang L, Gao XH, Mao LY, Hu Y, Lou XW. One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small. 2014;10(14):2815. https://doi.org/10.1002/smll.201400239.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang HX, Han ZF, Deng QB. The effect of an external magnetic field on the electrochemical capacitance of nanoporous nickel for energy storage. Nanomaterials. 2019;9(5):694. https://doi.org/10.3390/nano9050694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang HX, Wang ZF, Yang MZ, Deng QB. The effect of an external magnetic field on the dealloying process of the Ni-Al alloy in alkaline solution. Phys Chem Chem Phys. 2017;19(28):18167. https://doi.org/10.1039/c7cp03363j.

    Article  CAS  PubMed  Google Scholar 

  47. Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y. Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 2010;10(4):1409. https://doi.org/10.1021/nl100258p.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou XY, Cheng FY, Yang J, Jia M, Sun A, Tang JJ. N-doped carbon encapsulated MnO nanoparticles for enhanced lithium storage. Mater Lett. 2019;234:335. https://doi.org/10.1016/j.matlet.2018.09.072.

    Article  CAS  Google Scholar 

  49. Huang YC, Li ZH, Zhu TY, Gao XH, Lv XQ, Ling M, Wan ZW, Xia YY. Ferromagnetic 1D-Fe3O4@C microrods boost polysulfide anchoring for lithium–sulfur batteries. ACS Appl Energy Mater. 2021;4(4):3921. https://doi.org/10.1021/acsaem.1c00298.

    Article  CAS  Google Scholar 

  50. Han LF, Wang JL, Mu XW, Wu T, Liao C, Wu N, Xing WY, Song L, Kan YC, Hu Y. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. J Colloid Interface Sci. 2021;585:596. https://doi.org/10.1016/j.jcis.2020.10.039.

    Article  CAS  PubMed  Google Scholar 

  51. Yang JL, Tu B, Fang MN, Li LS, Tang ZY. Nanoscale pore-pore coupling effect on ion transport through ordered porous monolayers. ACS Nano. 2022;16(9):13294. https://doi.org/10.1021/acsnano.2c05907.

    Article  CAS  PubMed  Google Scholar 

  52. Chen L, Tu B, Lu XB, Li F, Jiang L, Antonietti M, Xiao K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat Commun. 2021;12(1):4650. https://doi.org/10.1038/s41467-021-24947-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang CJ, Wang Y, Cheng YH, Qi ZP, Liu AF, Deng QB, Hu N. Naturally dried superelastic bioinspired graphene aerogel for pressure/stretch sensing and separation. Compos Sci Technol. 2022;226:109549. https://doi.org/10.1016/j.compscitech.2022.109549.

    Article  CAS  Google Scholar 

  54. Sander JS, Erb RM, Li L, Gurijala A, Chiang YM. High-performance battery electrodes via magnetic templating. Nat Energy. 2016;1(8):16099. https://doi.org/10.1038/nenergy.2016.99.

    Article  CAS  Google Scholar 

  55. Zhang L, Zeng MY, Wu DD, Yan XB. Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance. ACS Sustain Chem Eng. 2019;7(6):6152. https://doi.org/10.1021/acssuschemeng.8b06358.

    Article  CAS  Google Scholar 

  56. Zhang L, Zeng MY, Liu ZQ, Ma QH, Lu YL, Ma J, Yan XB. Aligned Ti3C2Tx electrodes induced by magnetic field for high-performance lithium-ion storage. ACS Appl Energy Mater. 2021;4(6):5590. https://doi.org/10.1021/acsaem.1c00361.

    Article  CAS  Google Scholar 

  57. Xu Q, Li XF, Kheimeh Sari HM, Li WB, Liu W, Hao YC, Qin J, Cao B, Xiao W, Xu Y, Wei Y, Kou L, Tian ZY, Shao L, Zhang C, Sun XL. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy. 2020;77:105034. https://doi.org/10.1016/j.nanoen.2020.105034.

    Article  CAS  Google Scholar 

  58. Kim C, Yang Y, Lopez DH, Ha D. Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties. Appl Phys Lett. 2020;117(12):123903. https://doi.org/10.1063/5.0016456.

    Article  CAS  Google Scholar 

  59. Gao DC, Yang JX, Zhang DY, Chang CK. An effective strategy to enhance the electrochemical performance of LiNi0.6Mn0.2Co0.2O2: optimizing a Li diffusion pathway via magnetic alignment of single-crystal cathode material under an ordinary 0.4T magnetic field. Ceram Int. 2022;48(21):31598. https://doi.org/10.1016/j.ceramint.2022.07.081.

    Article  CAS  Google Scholar 

  60. Zhou J, Zhang DY, Sun GH, Chang CK. B-axis oriented alignment of LiFePO4 monocrystalline platelets by magnetic orientation for a high-performance lithium-ion battery. Solid State Ion. 2019;338:96. https://doi.org/10.1016/j.ssi.2019.05.002.

    Article  CAS  Google Scholar 

  61. Kim C, Yang Y, Ha D, Kim DH, Kim H. Crystal alignment of a LiFePO4 cathode material for lithium ion batteries using its magnetic properties. RSC Adv. 2019;9(55):31936. https://doi.org/10.1039/c9ra05284d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu Y, Li N, Wu S, Liao K, Zhu K, Yi J, Zhou H. Reducing the charging voltage of a Li–O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ Sci. 2015;8(9):2664. https://doi.org/10.1039/c5ee01958c.

    Article  CAS  Google Scholar 

  63. Yan JH, Wang Y, Zhang YY, Xia SH, Yu JY, Ding B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv Mater. 2021;33(5):2007525. https://doi.org/10.1002/adma.202007525.

    Article  CAS  Google Scholar 

  64. Zhang L, Wu DD, Yan XB. Applications of magnetic field for electrochemical energy storage. Appl Phys Rev. 2022;9(3):031307. https://doi.org/10.1063/5.0068465.

    Article  CAS  Google Scholar 

  65. Liang P, Li Q, Chen LM, Tang ZJ, Li ZT, Wang Y, Tang YC, Han CP, Lan ZW, Zhi CY, Li HF. The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. J Mater Chem A. 2022;10(22):11971. https://doi.org/10.1039/d2ta02077g.

    Article  CAS  Google Scholar 

  66. Cheng HM, Wang FM, Chu JP. Effect of Lorentz force on the electrochemical performance of lithium-ion batteries. Electrochem Commun. 2017;76:63. https://doi.org/10.1016/j.elecom.2017.01.022.

    Article  CAS  Google Scholar 

  67. Ruan GQ, Hua J, Hu X, Yu CQ. Study on the influence of magnetic field on the performance of lithium-ion batteries. Energy Rep. 2022;8:1294. https://doi.org/10.1016/j.egyr.2022.02.095.

    Article  Google Scholar 

  68. Sarkar A, Shrotriya P, Nlebedim IC. Magnetohydrodynamic control of interfacial degradation in lithium-ion batteries for fast charging applications. ACS Appl Mater Interfaces. 2021;13(36):43606. https://doi.org/10.1021/acsami.1c10788.

    Article  CAS  PubMed  Google Scholar 

  69. Ma JY, Guo XT, Yan Y, Xue HG, Pang H. FeOx-based materials for electrochemical energy storage. Adv Sci. 2018;5(6):1700986. https://doi.org/10.1002/advs.201700986.

    Article  CAS  Google Scholar 

  70. Liu H, Luo SH, Yan SX, Wang Q, Hu DB, Wang YL, Feng J, Yi TF. High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos B. 2019;164:576. https://doi.org/10.1016/j.compositesb.2019.01.084.

    Article  CAS  Google Scholar 

  71. Geng L, Gao ZL, Deng QB. Electrochemical performance of iron oxide nanoflakes on carbon cloth under an external magnetic field. Metals. 2018;8(11):939. https://doi.org/10.3390/met8110939.

    Article  CAS  Google Scholar 

  72. Ganguly D, VS A, Ghosh A, Ramaprabhu S. Magnetic field assisted high capacity durable Li-ion battery using magnetic alpha-Fe2O3 nanoparticles decorated expired drug derived n-doped carbon anode. Sci Rep. 2020;10(1):9945. https://doi.org/10.1038/s41598-020-67042-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2(5):833. https://doi.org/10.1016/j.joule.2018.03.008.

    Article  CAS  Google Scholar 

  74. Jiao PG, Ye DH, Zhu CY, Wu S, Qin CL, An CH, Hu N, Deng QB. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. Nanoscale. 2022;14(39):14322. https://doi.org/10.1039/d2nr03687h.

    Article  CAS  PubMed  Google Scholar 

  75. Ji X, Hou SY, Wang PF, He XZ, Piao N, Chen J, Fan XL, Wang CS. Solid-state electrolyte design for lithium dendrite suppression. Adv Mater. 2020;32(46):2002741. https://doi.org/10.1002/adma.202002741.

    Article  CAS  Google Scholar 

  76. Zhang QF, Yue B, Shao CL, Shao H, Li L, Dong XT, Wang JX, Yu WS. Suppression of lithium dendrites in all-solid-state lithium batteries by using a janus-structured composite solid electrolyte. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2022.136479.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xu XL, Wang SJ, Wang H, Hu C, Jin Y, Liu JB, Yan H. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J Energy Chem. 2018;27(2):513. https://doi.org/10.1016/j.jechem.2017.11.010.

    Article  Google Scholar 

  78. Shen L, Shi PR, Hao XG, Zhao Q, Ma JB, He YB, Kang FY. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small. 2020;16(26):2000699. https://doi.org/10.1002/smll.202000699.

    Article  CAS  Google Scholar 

  79. Huang YQ, Wu XS, Nie L, Chen SJ, Sun ZT, He YJ, Liu W. Mechanism of lithium electrodeposition in a magnetic field. Solid State Ion. 2020;345:115171. https://doi.org/10.1016/j.ssi.2019.115171.

    Article  CAS  Google Scholar 

  80. Chen YX, Dou XY, Wang K, Han YS. Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes. Green Energy Environ. 2022;7(5):965. https://doi.org/10.1016/j.gee.2020.12.014.

    Article  CAS  Google Scholar 

  81. Zhu RX, Lin S, Jiao JF, Ma YD, Cai ZW, Hany K, Hamouda TM, Cai YR. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium–sulfur battery. Ionics. 2019;26(5):2325. https://doi.org/10.1007/s11581-019-03350-5.

    Article  CAS  Google Scholar 

  82. Gao Z, Schwab Y, Zhang YY, Song NN, Li XD. Ferromagnetic nanoparticle–assisted polysulfide trapping for enhanced lithium–sulfur batteries. Adv Funct Mater. 2018;28(20):1800563. https://doi.org/10.1002/adfm.201800563.

    Article  CAS  Google Scholar 

  83. Ren X, Wu TZ, Sun YM, Li Y, Xian GY, Liu XH, Shen CM, Gracia J, Gao HJ, Yang HT, Xu ZC. Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun. 2021;12(1):2608. https://doi.org/10.1038/s41467-021-22865-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy. 2019;4(6):519. https://doi.org/10.1038/s41560-019-0404-4.

    Article  CAS  Google Scholar 

  85. Hu L, Li J, Sun B, Feng SF, Wang LD, Hao ZK. Preparation and photocatalytic properties of PW12/Bi2WO6. J Hebei Univ Technol. 2023;52(2):85. https://doi.org/10.14081/j.cnki.hgdxb.2023.02.011.

    Article  Google Scholar 

  86. Hu YY, Jiang T, Zhang M, Han L, Li J, Yan B. Fabrication of MoS2/C3N4 NTs composites by one-step hydrothermal method and their photocatalytic properties. J Hebei Univ Technol. 2020;49(5):58. https://doi.org/10.14081/j.cnki.hgdxb.2020.05.007.

    Article  CAS  Google Scholar 

  87. Liang Z, Wang W, Lu YC. The path toward practical Li–air batteries. Joule. 2022;6(11):2458. https://doi.org/10.1016/j.joule.2022.10.008.

    Article  CAS  Google Scholar 

  88. Wang HF, Wang XX, Li F, Xu JJ. Fundamental understanding and construction of solid-state Li–air batteries. Small Sci. 2022;2(5):2200005. https://doi.org/10.1002/smsc.202200005.

    Article  CAS  Google Scholar 

  89. Wu XB, Yu W, Xu W, Zhang YJ, Guan SD, Zhang Z, Li SW, Wang HC, Wang XJ, Zhang L, Nan CW, Li LL. Balancing oxygen evolution reaction and oxygen reduction reaction processes in Li–O2 batteries through tuning the bond distances of RuO2. Compos B. 2022;234:109727. https://doi.org/10.1016/j.compositesb.2022.109727.

    Article  CAS  Google Scholar 

  90. Geng DS, Ding N, Hor TSA, Chien SW, Liu ZL, Wuu D, Sun XL, Zong Y. From lithium–oxygen to lithium–air batteries: challenges and opportunities. Adv Energy Mater. 2016;6(9):1502164. https://doi.org/10.1002/aenm.201502164.

    Article  CAS  Google Scholar 

  91. Barham JP, König B. Synthetic photoelectrochemistry. Angew Chem Int Ed. 2020;59(29):11732. https://doi.org/10.1002/anie.201913767.

    Article  CAS  Google Scholar 

  92. Feng YY, Xue HR, Wang T, Gong H, Gao B, Xia W, Jiang C, Li JJ, Huang XL, He JP. Enhanced Li2O2 decomposition in rechargeable Li–O2 battery by incorporating WO3 nanowire array photocatalyst. ACS Sustain Chem Eng. 2019;7(6):5931. https://doi.org/10.1021/acssuschemeng.8b05944.

    Article  CAS  Google Scholar 

  93. Zhen MM, Meng XY, Shen BX. Application research of MXene based materials in the field of photocatalysis. J Hebei Univ Technol. 2023;52(3):44. https://doi.org/10.14081/j.cnki.hgdxb.2023.03.005.

    Article  Google Scholar 

  94. Li ML, Wang XX, Li F, Zheng LJ, Xu JJ, Yu JH. A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv Mater. 2020;32(34):1907098. https://doi.org/10.1002/adma.201907098.

    Article  CAS  Google Scholar 

  95. Wang XX, Guan DH, Li F, Li ML, Zheng LJ, Xu JJ. Magnetic and optical field multi-assisted Li–O2 batteries with ultrahigh energy efficiency and cycle stability. Adv Mater. 2022;34(2):2104792. https://doi.org/10.1002/adma.202104792.

    Article  CAS  Google Scholar 

  96. Jia C, Zhang F, She LN, Li Q, He XX, Sun J, Lei ZB, Liu ZH. Ultra-large sized siloxene nanosheets as bifunctional photocatalyst for a Li–O2 battery with superior round-trip efficiency and extra-long durability. Angew Chem Int Ed Engl. 2021;60(20):11257. https://doi.org/10.1002/anie.202101991.

    Article  CAS  Google Scholar 

  97. Jia CY, Zhang F, Zhang N, Li Q, He XX, Sun J, Jiang RB, Lei ZB, Liu ZH. Bifunctional photoassisted Li–O2 battery with ultrahigh rate-cycling performance based on siloxene size regulation. ACS Nano. 2023;17:1713. https://doi.org/10.1021/acsnano.2c12025.

    Article  CAS  Google Scholar 

  98. Guan DH, Wang XX, Li ML, Li F, Zheng LJ, Huang XL, Xu JJ. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li–CO2 battery. Angew Chem Int Ed Engl. 2020;59(44):19518. https://doi.org/10.1002/anie.202005053.

    Article  CAS  Google Scholar 

  99. Ahmadiparidari A, Warburton RE, Majidi L, Asadi M, Chamaani A, Jokisaari JR, Rastegar S, Hemmat Z, Sayahpour B, Assary RS, Narayanan B, Abbasi P, Redfern PC, Ngo A, Voros M, Greeley J, Klie R, Curtiss LA, Salehi-Khojin A. A long-cycle-life lithium–CO2 battery with carbon neutrality. Adv Mater. 2019;31(40):1902518. https://doi.org/10.1002/adma.201902518.

    Article  CAS  Google Scholar 

  100. Wang S, Song HC, Zhu T, Chen JM, Yu ZQ, Wang PF, Yu LW, Xu J, Zhou HS, Chen KJ. An ultralow-charge-overpotential and long-cycle-life solid-state Li–CO2 battery enabled by plasmon-enhanced solar photothermal catalysis. Nano Energy. 2022;100:107521. https://doi.org/10.1016/j.nanoen.2022.107521.

    Article  CAS  Google Scholar 

  101. Wang XX, Guan DH, Li F, Li ML, Zheng LJ, Xu JJ. A renewable light-promoted flexible Li–CO2 battery with ultrahigh energy efficiency of 97.9%. Small. 2021;17(26):2100642. https://doi.org/10.1002/smll.202100642.

    Article  CAS  Google Scholar 

  102. Fu KK, Cheng J, Li T, Hu LB. Flexible batteries: from mechanics to devices. ACS Energy Lett. 2016;1(5):1065. https://doi.org/10.1021/acsenergylett.6b00401.

    Article  CAS  Google Scholar 

  103. Zhu T, Pan J, An ZY, Zhe RJ, Ou QH, Wang HE. Bifunctional NiCuOx photoelectrodes to promote pseudocapacitive charge storage by in situ photocharging. J Mater Chem A. 2022;10(38):20375. https://doi.org/10.1039/d2ta04966j.

    Article  CAS  Google Scholar 

  104. Yu XL, Li N, Zhang SD, Liu C, Chen LQ, Xi M, Song YP, Ali S, Iqbal O, Han MY, Jiang CL, Wang ZY. Enhancing the energy storage capacity of graphene supercapacitors via solar heating. J Mater Chem A. 2022;10(7):3382. https://doi.org/10.1039/d1ta09222g.

    Article  CAS  Google Scholar 

  105. Lee A, Voros M, Dose WM, Niklas J, Poluektov O, Schaller RD, Iddir H, Maroni VA, Lee E, Ingram B, Curtiss LA, Johnson CS. Photo-accelerated fast charging of lithium-ion batteries. Nat Commun. 2019;10(1):4946. https://doi.org/10.1038/s41467-019-12863-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Boruah BD, Wen B, De Volder M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 2021;21(8):3527. https://doi.org/10.1021/acs.nanolett.1c00298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li Q, Li N, Ishida M, Zhou HS. Saving electric energy by integrating a photoelectrode into a Li-ion battery. J Mater Chem A. 2015;3(42):20903. https://doi.org/10.1039/c5ta06908d.

    Article  CAS  Google Scholar 

  108. Liu YH, Qu J, Chang W, Yang CY, Liu HJ, Zhai XZ, Kang Y, Guo YG, Yu ZZ. A photo-assisted reversible lithium–sulfur battery. Energy Storage Mater. 2022;50:334. https://doi.org/10.1016/j.ensm.2022.05.030.

    Article  Google Scholar 

  109. Wu KF, Zhu HM, Liu Z, Rodriguez-Cordoba W, Lian TQ. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J Am Chem Soc. 2012;134(25):10337. https://doi.org/10.1021/ja303306u.

    Article  CAS  PubMed  Google Scholar 

  110. Li N, Wang YR, Tang DM, Zhou HS. Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew Chem Int Ed Engl. 2015;54(32):9271. https://doi.org/10.1002/anie.201503425.

    Article  CAS  Google Scholar 

  111. Chen P, Li GR, Li TT, Gao XP. Solar-driven rechargeable lithium–sulfur battery. Adv Sci. 2019;6(15):1900620. https://doi.org/10.1002/advs.201900620.

    Article  CAS  Google Scholar 

  112. Cheng Z, Pan H, Li F, Duan C, Liu H, Zhong HY, Sheng CC, Hou GJ, He P, Zhou HS. Achieving long cycle life for all-solid-state rechargeable Li–I2 battery by a confined dissolution strategy. Nat Commun. 2022;13(1):125. https://doi.org/10.1038/s41467-021-27728-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu MZ, McCulloch WD, Beauchamp DR, Huang ZJ, Ren XD, Wu YY. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J Am Chem Soc. 2015;137(26):8332. https://doi.org/10.1021/jacs.5b03626.

    Article  CAS  PubMed  Google Scholar 

  114. Nikiforidis G, Tajima K, Byon HR. High energy efficiency and stability for photoassisted aqueous lithium-iodine redox batteries. ACS Energy Lett. 2016;1(4):806. https://doi.org/10.1021/acsenergylett.6b00359.

    Article  CAS  Google Scholar 

  115. Li JF, Liu HM, Sun KW, Wang RH, Qian CF, Yu F, Zhang L, Bao WZ. Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries. J Mater Chem A. 2022;10(13):7326. https://doi.org/10.1039/d2ta00258b.

    Article  CAS  Google Scholar 

  116. Mussa AS, Klett M, Lindbergh G, Lindström RW. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells. J Power Sources. 2018;385:18. https://doi.org/10.1016/j.jpowsour.2018.03.020.

    Article  CAS  Google Scholar 

  117. Doux JM, Nguyen H, Tan DHS, Banerjee A, Wang X, Wu EA, Jo C, Yang H, Meng YS. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv Energy Mater. 2019;10(1):1903253. https://doi.org/10.1002/aenm.201903253.

    Article  CAS  Google Scholar 

  118. Yin X, Tang W, Jung ID, Phua KC, Adams S, Lee SW, Zheng GW. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy. 2018;50:659. https://doi.org/10.1016/j.nanoen.2018.06.003.

    Article  CAS  Google Scholar 

  119. Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries? Adv Energy Mater. 2021. https://doi.org/10.1002/aenm.202003416.

    Article  Google Scholar 

  120. Cheng Y, Shu J, Xu L, Xia YY, Du LL, Zhang G, Mai LQ. Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid-state lithium batteries. Adv Energy Mater. 2021;11(12):2100026. https://doi.org/10.1002/aenm.202100026.

    Article  CAS  Google Scholar 

  121. Jiang ZY, Xie HQ, Wang SQ, Song X, Yao X, Wang HH. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater. 2018;8(27):1801433. https://doi.org/10.1002/aenm.201801433.

    Article  CAS  Google Scholar 

  122. Doux JM, Yang Y, Tan DHS, Nguyen H, Wu EA, Wang X, Banerjee A, Meng YS. Pressure effects on sulfide electrolytes for all solid-state batteries. J Mater Chem A. 2020;8(10):5049. https://doi.org/10.1039/c9ta12889a.

    Article  CAS  Google Scholar 

  123. Yao XH, Olsson E, Wang MM, Wang J, Cai Q, Peng NH, Webb R, Zhao YL. Xenon ion implantation induced surface compressive stress for preventing dendrite penetration in solid-state electrolytes. Small. 2022;18(23):2108124. https://doi.org/10.1002/smll.202108124.

    Article  CAS  Google Scholar 

  124. Müller V, Scurtu RG, Memm M, Danzer MA, Wohlfahrt-Mehrens M. Study of the influence of mechanical pressure on the performance and aging of lithium-ion battery cells. J Power Sources. 2019;440:227148. https://doi.org/10.1016/j.jpowsour.2019.227148.

    Article  CAS  Google Scholar 

  125. Zhou L, Xing LC, Zheng YJ, Lai X, Su JH, Deng C, Sun T. A study of external surface pressure effects on the properties for lithium-ion pouch cells. Int J Energy Res. 2020;44(8):6778. https://doi.org/10.1002/er.5415.

    Article  Google Scholar 

  126. Cao C, Steinrück HG, Paul PP, Dunlop AR, Trask SE, Jansen AN, Kasse RM, Thampy V, Yusuf M, Weker JN, Shyam B, Subbaraman R, Davis K, Johnston CM, Takacs CJ, Toney MF. Conformal pressure and fast-charging Li-ion batteries. J Electrochem Soc. 2022;169(4):040540. https://doi.org/10.1149/1945-7111/ac653f.

    Article  CAS  Google Scholar 

  127. Niu SJ, Heng S, Zhu GB, Xu JM, Qu QT, Wu K, Zheng HH. Analysis on the effect of external press force on the performance of LiNi0.8Co0.1Mn0.1O2/graphite large pouch cells. J Energy Storage. 2021;44:103425. https://doi.org/10.1016/j.est.2021.103425.

    Article  Google Scholar 

  128. Göttlinger M, Daubinger P, Stracke W, Hartmann S, Giffin GA. Influence of external pressure on silicon electrodes in lithium-ion cells. Electrochim Acta. 2022;419:140354. https://doi.org/10.1016/j.electacta.2022.140354.

    Article  CAS  Google Scholar 

  129. Jin Y, Li S, Kushima A, Zheng XQ, Sun YM, Xie J, Sun J, Xue WJ, Zhou GM, Wu J, Shi FF, Zhang RF, Zhu Z, So K, Cui Y, Li J. Self-healing sei enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580. https://doi.org/10.1039/c6ee02685k.

    Article  CAS  Google Scholar 

  130. Li XQ, Xing YF, Xu J, Deng QB, Shao LH. Uniform yolk-shell structured Si–C nanoparticles as a high performance anode material for the Li-ion battery. Chem Commun. 2020;56(3):364. https://doi.org/10.1039/c9cc07997a.

    Article  CAS  Google Scholar 

  131. Shi JW, Zu LH, Gao HY, Hu GX, Zhang Q. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202002980.

    Article  PubMed  PubMed Central  Google Scholar 

  132. De SL, Berckmans G, Marinaro M, Smekens J, Firouz Y, Wohlfahrt-Mehrens M, van Mierlo J, Omar N. Comprehensive aging analysis of volumetric constrained lithium-ion pouch cells with high concentration silicon-alloy anodes. Energies. 2018;11(11):2948. https://doi.org/10.3390/en11112948.

    Article  CAS  Google Scholar 

  133. De SL, Berckmans G, Marinaro M, Wohlfahrt-Mehrens M, Berecibar M, Van Mierlo J. Mechanical behavior of silicon-graphite pouch cells under external compressive load: implications and opportunities for battery pack design. J Power Sources. 2020;451:227774. https://doi.org/10.1016/j.jpowsour.2020.227774.

    Article  CAS  Google Scholar 

  134. Müller V, Scurtu RG, Richter K, Waldmann T, Memm M, Danzer MA, Wohlfahrt-Mehrens M. Effects of mechanical compression on the aging and the expansion behavior of Si/C-composite|NMC811 in different lithium-ion battery cell formats. J Electrochem Soc. 2019;166(15):3796. https://doi.org/10.1149/2.1121915jes.

    Article  CAS  Google Scholar 

  135. Berckmans G, De Sutter L, Marinaro M, Smekens J, Jaguemont J, Wohlfahrt-Mehrens M, van Mierlo J, Omar N. Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells. Electrochim Acta. 2019;306:387. https://doi.org/10.1016/j.electacta.2019.03.138.

    Article  CAS  Google Scholar 

  136. Zhang JL, Zhou ZK, Wang Y, Chen Q, Hou GY, Tang YP. Ultrasonic-assisted enhancement of lithium-oxygen battery. Nano Energy. 2022. https://doi.org/10.1016/j.nanoen.2022.107655.

    Article  Google Scholar 

  137. Huang A, Liu HD, Manor O, Liu P, Friend J. Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv Mater. 2020;32(14):1907516. https://doi.org/10.1002/adma.201907516.

    Article  CAS  Google Scholar 

  138. Wang H, Ke HR, Chen YZ, Wang JH, Yan F, Cui XD. Promotion of interface fusion of solid polymer electrolyte and cathode by ultrasonic vibration. Sensors. 2022;22(5):1814. https://doi.org/10.3390/s22051814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang JL, Zhou ZK, Wang Y, Chen Q, Hou GY, Tang YP. Pulsed current boosts the stability of the lithium metal anode and the improvement of lithium-oxygen battery performance. ACS Appl Mater Interfaces. 2022;14(44):50414. https://doi.org/10.1021/acsami.2c15347.

    Article  CAS  Google Scholar 

  140. Huang XR, Liu WJ, Acharya AB, Meng JH, Teodorescu R, Stroe DI. Effect of pulsed current on charging performance of lithium-ion batteries. IEEE Trans Ind Electron. 2022;69(10):10144. https://doi.org/10.1109/tie.2021.3121726.

    Article  Google Scholar 

  141. Zhang ZL, Wang ZL, Lu XM. Suppressing lithium dendrite growth via sinusoidal ripple current produced by triboelectric nanogenerators. Adv Energy Mater. 2019;9(20):1900487. https://doi.org/10.1002/aenm.201900487.

    Article  CAS  Google Scholar 

  142. Qiao DG, Liu XL, Dou RF, Wen Z, Zhou WN, Liu L. Quantitative analysis of the inhibition effect of rising temperature and pulse charging on lithium dendrite growth. J Energy Storage. 2022;49:104137. https://doi.org/10.1016/j.est.2022.104137.

    Article  Google Scholar 

  143. Luo ST, Zhang YF, Liu XY, Wang ZY, Fan A, Wang HD, Ma WG, Zhu LY, Zhang X. Thermal behavior of Li electrode in all-solid-state batteries and improved performance by temperature modulation. Int J Heat Mass Transfer. 2022;199:123450. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123450.

    Article  CAS  Google Scholar 

  144. Gao XW, Zhou YN, Han DZ, Zhou JQ, Zhou DZ, Tang W, Goodenough JB. Thermodynamic understanding of Li-dendrite formation. Joule. 2020;4(9):1864. https://doi.org/10.1016/j.joule.2020.06.016.

    Article  CAS  Google Scholar 

  145. Yan K, Wang JY, Zhao SQ, Zhou D, Sun B, Cui Y, Wang GX. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew Chem Int Ed Engl. 2019;58(33):11364. https://doi.org/10.1002/anie.201905251.

    Article  CAS  PubMed  Google Scholar 

  146. Guo YP, Li D, Xiong RD, Li HQ. Investigation of the temperature-dependent behaviours of Li metal anode. Chem Commun. 2019;55(66):9773. https://doi.org/10.1039/c9cc04897a.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund of China (Nos. 12172118 and 12172205), the Research Program of Local Science Research Development under the Guidance of Central (No. 216Z4402G) and Science Research Project of Hebei Education Department (No. JZX2023004). We also acknowledge support from ‘‘Yuanguang” Scholar Program of Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-Hua An, Qi-Bo Deng or Ning Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SK., Wu, S., Song, YC. et al. Regulating electrochemical performances of lithium battery by external physical field. Rare Met. 43, 2391–2417 (2024). https://doi.org/10.1007/s12598-024-02645-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02645-5

Keywords

Navigation