Skip to main content
Log in

Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

电催化氮还原反应(NRR)是在常规条件下合成氨(NH3)的一种有效方法,但其催化性能(例如:选择性、催化效率等)在很大程度上取决于催化剂的物理性质。在本工作中,物理性能可控的Ni-Sn 合金纳米粒子通过简单的两步法成功合成,并将其用作 NRR 的高效电催化剂。通过调控Ni : Sn的原子比例,分别构建了不同物相的Ni-Sn合金,包括:Ni、Ni-Ni3Sn、Ni3Sn、Ni3Sn2、Ni3Sn4和Sn,其中Ni3Sn合金具有高分散性、粒径均匀的颗粒。作为NRR催化剂,Ni3Sn表现出了最好的产NH3性能,在-0.4 V (vs. RHE)电压下的NH3产率和法拉第效率分别为70.60 μg.h-1.mg-1cat和38.00%,远远高于其他Ni-Sn合金和单金属催化剂。此外,该催化剂表现出了优异的选择性,几乎检测不到副产物。相比于在相同条件下合成的其他Ni-Sn合金,Ni3Sn催化剂优异的NRR特性主要归因于独特的相结构以及相对更小的颗粒尺寸。本工作为系统地研究 NRR的物相影响提供了一种简单且有效的方法.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Fu X, Pedersen JB, Zhou Y, Saccoccio M, Li S, Sazinas R, Li K, Andersen SZ, Xu A, Deissler NH, Mygind J, Wei C, Kibsgaard J, Vesborg P, Norskov JK, Chorkendorff I. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science. 2023;379(6633):707. https://doi.org/10.1126/science.adf4403.

    Article  CAS  PubMed  Google Scholar 

  2. Suryanto BHR, Du HL, Wang DB, Chen J, Simonov AN, Macfarlane DR. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal. 2019;2(4):290. https://doi.org/10.1038/s41929-019-0252-4.

    Article  CAS  Google Scholar 

  3. Wu ZX, Zhao Y, Jin W, Jia BH, Wang J, Ma TY. Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv Funct Mater. 2021;31(9):2009070. https://doi.org/10.1002/adfm.202009070.

    Article  CAS  Google Scholar 

  4. Liu Y, Wang LL, Chen L, Wang HD, Jadhav AR, Yang TH, Wang YX, Zhang JQ, Kumar A, Lee JS, Bui VQ, Kim MG, Lee HY. Unveiling the protonation linetics-dependent selectivity in nitrogen electroreduction: achieving 75.05% selectivity. Angew Chem Int Ed. 2022;61(50):e202209555. https://doi.org/10.1002/ange.202209555.

    Article  CAS  Google Scholar 

  5. Wang YR, Jin W, Xuan CJ, Wang J, Li J, Yu Q, Li BB, Wang C, Cai WQ, Wang J. In-situ growth of CoFeS2 on metal-organic frameworks-derived Co-NC polyhedron enables high-performance oxygen electrocatalysis for rechargeable zinc-air batteries. J Power Sources. 2021;512:230430. https://doi.org/10.1016/j.jpowsour.2021.230430.

    Article  CAS  Google Scholar 

  6. Wu XG, Wang R, Ma F, Liu XL, Jia DL, Yang HC, Liu YP, Wang ZX, Zheng HZ, Zhang YN, Hou J, Huang JJ, Peng SL. FeCo-N encapsuled in nitrogen-doped carbon nanotubes as bifunctional electrocatalysts with a high stability for zinc air batteries. Rare Met. 2023;41(5):1526. https://doi.org/10.1007/s12598-022-02173-0.

    Article  CAS  Google Scholar 

  7. Smith BE. Nitrogenase reveals its inner secrets. Science. 2002;297(5587):1654. https://doi.org/10.1126/science.1076659.

    Article  CAS  PubMed  Google Scholar 

  8. Arif M, Yasin G, Luo L, Ye W, Mushtaq MA, Fang XY, Xiang X, Ji S, Yan DP. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl Catal B-Environ. 2020;265(15):118559. https://doi.org/10.1016/j.apcatb.2019.118559.

    Article  CAS  Google Scholar 

  9. Jewess M, Crabtree RH. Electrocatalytic nitrogen fixation for distributed fertilizer production. ACS Sustain Chem Eng. 2016;4(11):5855. https://doi.org/10.1021/acssuschemeng.6b01473.

    Article  CAS  Google Scholar 

  10. Zhao X, Hu GZ, Chen GF, Zhang HB, Zhang SS, Wang HH. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv Mater. 2021;33(33):2007650. https://doi.org/10.1002/adma.202007650.

    Article  CAS  Google Scholar 

  11. Xue ZH, Zhang SN, Lin YX, Su H, Zhai GY, Han JT, Yu QY, Li XH, Antonietti M, Chen JS. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J Am Chem Soc. 2019;141(38):14976. https://doi.org/10.1021/jacs.9b07963.

    Article  CAS  PubMed  Google Scholar 

  12. Miao RY, Li XX, Lei Q, Liu H, Ma ZH, Liu XD, Yin ZY, Tang ZB, Zhang L, Tian YH. Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3 and NO2 into N2 over CuPd nanowire network. Rare Met. 2022;41(3):851. https://doi.org/10.1007/s12598-021-01854-6.

    Article  CAS  Google Scholar 

  13. Huang CR, Shang LM, Han P, Gu ZX, Al-Enizi AM, Almutairi TM, Cao N, Zheng GF. Electrochemical N2 fixation by Cu-modified iron oxide dendrites. J Colloid Interf Sci. 2019;552:312. https://doi.org/10.1016/j.jcis.2019.05.045.

    Article  CAS  Google Scholar 

  14. Liu AM, Yang YN, Kong DZ, Ren XF, Gao MF, Liang XY, Yang QY, Zhang JL, Gao LG, Ma TL. DFT study of the defective carbon materials with vacancy and heteroatom as catalyst for NRR. Appl Surf Sci. 2021;536: 147851. https://doi.org/10.1016/j.apsusc.2020.147851.

    Article  CAS  Google Scholar 

  15. Nakaya Y, Furukawa S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem Rev. 2023;123(9):5859. https://doi.org/10.1021/acs.chemrev.2c00356.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang BL, Deng LF, Liu B, Luo CY, Liebau M, Zhang SG, Gläser R. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met. 2022;41(1):166. https://doi.org/10.1007/s12598-021-01790-5.

    Article  CAS  Google Scholar 

  17. Cui YH, Dong AQ, Qu YB, Zhang JY, Zhao M, Wang ZL, Jiang Q. Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia. Chem Eng J. 2021;426:131843. https://doi.org/10.1016/j.cej.2021.131843.

    Article  CAS  Google Scholar 

  18. Kim CS, Song JY, Choi CH, Ha JP, Lee WM, Nam YT, Lee DM, Kim GJ, Gereige I, Jung WB, Lee HJ, Jung YS, Jeong HS, Jung HT. Atomic-scale homogeneous RuCu alloy nanoparticles for highly efficient electrocatalytic nitrogen reduction. Adv Mater. 2022;34(40):2205270. https://doi.org/10.1002/adma.202205270.

    Article  CAS  Google Scholar 

  19. Fang Z, Wu P, Qian Y, Yu G. Gel-Derived Amorphous Bismut-Nickel Alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew Chem Int Ed. 2021;60(8):4275. https://doi.org/10.1002/anie.202014302.

    Article  CAS  Google Scholar 

  20. Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam DH, Tan CS, Ding Y, Wu J, Lum Y, Dinh CT, Sinton D, Zheng G, Sargent EH. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J Am Chem Soc. 2020;142(12):5702. https://doi.org/10.1021/jacs.9b13347.

    Article  CAS  PubMed  Google Scholar 

  21. Sun SQ, Wang JQ, Zhu YC. Conductivity of metal W-doped AgSnO2 materials. Chin J Rare Met. 2022;4(8):1111. https://doi.org/10.13373/j.cnki.cjrm.XY20030026.

    Article  Google Scholar 

  22. Cao YQ, Lin X, Wang ZT, Wang LL, Song MH, Yang HO, Huang WD. Three-dimensional reconstruction of anomalous eutectic in laser remelted Ni-30 wt.% Sn alloy. Sci Technol Adv Mat. 2015;16(6):65007. https://doi.org/10.1088/1468-6996/16/6/065007.

    Article  CAS  Google Scholar 

  23. Onda A, Komatsu T, Yashima T. Characterization and catalytic properties of Ni–Sn intermetallic compounds in acetylene hydrogenation. Phys Chem Chem Phys. 2000;2(13):2999. https://doi.org/10.1039/b001381l.

    Article  CAS  Google Scholar 

  24. Masai M, Mori K, Muramoto H, Fujiwara T, Ohnaka S. Dehydrogenation activity of nickel-tin-silica catalyst. J Catal. 1975;38(1):128. https://doi.org/10.1016/0021-9517(75)90070-6.

    Article  CAS  Google Scholar 

  25. Sun Y, Wu QL, Li H, Jiang SY, Wang JG, Zhang W, Song XM, Jia BH, Qiu JS, Ma TY. Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon. 2022;195:199. https://doi.org/10.1016/j.carbon.2022.04.026.

    Article  CAS  Google Scholar 

  26. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  27. Wang J, Xu JX, Guo XY, Shen T, Xuan CJ, Tian BL, Wen ZR, Zhu Y, Wang DL. Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery. Appl Catal B-Environ. 2021;298:120539. https://doi.org/10.1016/j.apcatb.2021.120539.

    Article  CAS  Google Scholar 

  28. Li Y, Liu Y, Liu X, Liu Y, Cheng Y, Zhang P, Deng P, Deng J, Kang Z, Li H. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022;15(7):6026. https://doi.org/10.1007/s12274-022-4298-2.

    Article  CAS  Google Scholar 

  29. Shi JL, Xiang SQ, Su DJ, Liu XH, Zhang W, Zhao LB. Theoretical insights on Au-based bimetallic alloy electrocatalysts for nitrogen reduction reaction with high selectivity and activity. ChemSusChem. 2021;14(20):4525. https://doi.org/10.1002/cssc.202101462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22202114), Natural Science Foundation of Shandong Province (Nos. ZR2022MB124 and ZR2022QB028), China Postdoctoral Science Foundation (No. 2021M701694), Postdoctoral Science Foundation of Jiangsu Province (No. 1006-YBA21038), and Experimental Technology Research Project of Qingdao Agricultural University (No. SYJS202217). The Central Laboratory of Qingdao Agriculture University is also acknowledged for the help of physical characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Yu Gong or Jie Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, HN., Meng, X. et al. Phase modulation of nickel-tin alloys in regulating electrocatalytic nitrogen reduction properties. Rare Met. 43, 2851–2858 (2024). https://doi.org/10.1007/s12598-024-02642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02642-8

Navigation