Skip to main content
Log in

Metallic Sb-stabilized porous silicon with stable SEI and high electron/ion conductivity boosting lithium-ion storage performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon (Si) has mild discharge potential and high theoretical capacity, making it a highly desirable material for lithium-ion batteries (LIBs). Nevertheless, the excessive volume expansion, poor ion/electron conductivity and unstable solid electrolyte interface (SEI) hinder practical application to LIBs. Herein, the metallic antimony (Sb) stabilized porous Si (Si–Sb) composite was prepared by magnesiothermic reduction of Sb2O3 and Mg2Si and chemical etching to remove the by-product of MgO. The highly conductive Sb nanodots embedded in the Si ligaments promote not only the formation of conductive and stable LiF-rich SEI, but also the electron/ion transport ability of Si. Owing to the outstanding bulk/interface stability, excellent conductivity, as well as ideal porous structure, the Si–Sb electrode demonstrates a capacity of 820 mAh·g−1 after undergoing 320 turns at 1000 mA·g−1. Additionally, it exhibits a stable capacity of 675 mAh·g−1 when tested at a higher current density of 5000 mA·g−1. The results reveal a viable solution to solve three problems at the same time, namely the poor conductivity, inferior SEI and excessive volume expansion of Si, boding well for the design of Si-based materials for high-energy LIBs.

Graphical abstract

摘要

硅具有较低的放电电位和较高的理论容量,是理想的锂离子电池负极材料。然而,硅的体积膨胀过大、离子/电子电导率差和固体电解质界面(SEI)不稳定阻碍了其在锂离子电池中的实际应用。本文采用镁热还原Sb2O3和Mg2Si以及化学蚀刻去除副产物MgO,制备了金属锑稳定多孔硅复合材料(Si-Sb)。高导电性的Sb纳米点嵌入在多孔硅骨架中,不仅提高了硅基体的导电性而且促进了稳定的富LiF的SEI形成。由于优异的体积/界面稳定性,良好的导电性以及理想的多孔结构,Si-Sb电极在1,000 mA•g-1的电流密度下进行320次循环后保持820 mAh•g-1的容量。此外,在5,000 mA•g-1的高电流密度下测试时,它仍展示出675 mAh•g-1的稳定容量。研究结果为同时解决硅的电导率差、SEI稳定性差和体积膨胀过大三个问题提供了可行的方案,为高比能锂离子电池硅基材料的设计提供了良好的前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shen YF, Zhang JM, Pu YF, Wang H, Wang B, Qian JF, Cao YL, Zhong FP, Ai XP, Yang HX. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 2019;4(7):1717. https://doi.org/10.1021/acsenergylett.9b00889.

    Article  CAS  Google Scholar 

  2. Geng KQ, Yang MQ, Meng JX, Zhou LF, Wang YQ, Sydorov D, Zhang Q, Zhong SW, Ma QX. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten. 2022;4(4):323. https://doi.org/10.1007/s42864-022-00173-2.

    Article  Google Scholar 

  3. Mei SX, Guo SG, Xiang B, Deng JG,  Fu JJ, Zhang XM, Zheng Y, Gao B, Paul K Chu, Huo KF. Enhanced ion conductivity and electrode-electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries. J Energy Chem. 2022;69(6):616–625. https://doi.org/10.1016/j.jechem.2022.02.002

    Article  CAS  Google Scholar 

  4. Han X, Zhou WJ, Chen MF, Chen JZ, Wang GW, Liu B, Luo LS, Chen SY, Zhang QB, Shi SQ. Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J Energy Chem. 2022;67(4):727. https://doi.org/10.1016/j.jechem.2021.11.021.

    Article  CAS  Google Scholar 

  5. An WL, Gao B, Mei SX, Xiang B, Fu JJ, Wang L, Zhang QB, Chu PK, Huo KF. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10(1):1447. https://doi.org/10.1038/s41467-019-09510-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bitew Z, Tesemma M, Beyene Y, Amare M. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives. Sustain Energy Fuels. 2022;6(4):1014. https://doi.org/10.1039/d1se01494c.

    Article  CAS  Google Scholar 

  7. Guo XB, Wanng JC, Li GJ, Gao B, Bie CY, Zhang YP. Preparation and lithium-ion storage properties of vanadium nitride/nano silicon/carbon composite microspheres. Chin J Rare Met. 2022;46(6):829. https://doi.org/10.13373/j.cnki.cjrm.XY21090023.

    Article  Google Scholar 

  8. Zhu GJ, Chao DL, Xu WL, Wu MH, Zhang HJ. Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano. 2021;15(10):15567. https://doi.org/10.1021/acsnano.1c05898.

    Article  CAS  PubMed  Google Scholar 

  9. Lei Y, Li S, Du M, Mi J, Gao DC, Hao L, Jiang LJ, Luo M, Jiang WQ, Li F, Wang SH. Preparation of double-shell Si@SnO2@C nanocomposite as anode for lithium-ion batteries by hydrothermal method.Rare Met. 2023;42(9):2972. https://doi.org/10.1007/s12598-023-02325-w.

    Article  CAS  Google Scholar 

  10. Shi JW, Zu LH, Gao HY, Hu GX, Zhang Q. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv Funct Mater. 2020;30(35):2002980. https://doi.org/10.1002/adfm.202002980.

    Article  CAS  Google Scholar 

  11. Li GJ, Guo SG, Xiang B, Mei SX, Zheng Y, Zhang XM, Gao B, Chu PK, Huo KF. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li-and Na-ion batteries. Energy Mater. 2022;2(3):200020. https://doi.org/10.20517/energymater.2022.24.

    Article  CAS  Google Scholar 

  12. Li T, Yang JY, Lu SG, Wang H, Ding HY. Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries. Rare Met. 2013;32(3):299. https://doi.org/10.1007/s12598-013-0045-x.

    Article  CAS  Google Scholar 

  13. Xiao W, Qiu YJ, Xu Q, Wang JJ, Xie C, Peng JH, Hu JH, Zhang JJ, Li XF. Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries. Electrochim Acta. 2020;364(12):137278. https://doi.org/10.1016/j.electacta.2020.137278.

    Article  CAS  Google Scholar 

  14. Ren Y, Yin XC, Xiao R, Mu TS, Huo H, Zuo PJ, Ma YL, Cheng XQ, Gao YZ, Yin GP. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chem Eng J. 2022;431(3):133982. https://doi.org/10.1016/j.cej.2021.133982.

    Article  CAS  Google Scholar 

  15. Yang C, Xin S, Mai LQ, You Y. Materials design for high-safety sodium-ion battery. Adv Energy Mater. 2021;11(2):2000974. https://doi.org/10.1002/aenm.202000974.

    Article  CAS  Google Scholar 

  16. Wang JT, Lu SG, Wang Y, Huang B, Yang JY, Tan A. Improvement of cycle behavior of Si/Sn anode composite supported by stable Si-O-C skeleton.Rare Met. 2022;41(5):1647. https://doi.org/10.1007/s12598-014-0377-1.

    Article  CAS  Google Scholar 

  17. Ge MZ, Cao CY, Biesold GM, Sewell CD, Hao SM, Huang JY, Zhang W, Lai YK, Lin ZQ. Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv Mater. 2021;33(16):2004577. https://doi.org/10.1002/adma.202004577.

    Article  CAS  Google Scholar 

  18. Yang Y, Yuan W, Kang WQ, Ye YT, Yuan YH, Qiu ZQ, Wang C, Zhang XQ, Ke YZ, Tang Y. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale. 2020;12(14):7461. https://doi.org/10.1039/c9nr10652a.

    Article  CAS  PubMed  Google Scholar 

  19. Liang Y, Zhao CZ, Yuan H, Chen Y, Zhang WC, Huang JQ, Yu DS, Liu YL, Titirici MM, Chueh YL. A review of rechargeable batteries for portable electronic devices. InfoMat. 2019;1(1):6. https://doi.org/10.1002/inf2.12000.

    Article  CAS  Google Scholar 

  20. Zhang CZ, Wang F, Han J, Bai S, Tan J, Liu JS, Li F. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2021;2(6):2100009. https://doi.org/10.1002/sstr.202100009.

    Article  CAS  Google Scholar 

  21. Jain R, Lakhnot AS, Bhimani K, Sharma S, Mahajani V, Panchal RA, Kamble M, Han F, Wang C, Koratkar N. Nanostructuring versus microstructuring in battery electrodes. Nat Rev Mater. 2022;7(9):736. https://doi.org/10.1038/s41578-022-00454-9.

    Article  CAS  Google Scholar 

  22. Sun L, Liu Y, Shao R, Wu J, Jiang RY, Jin Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Stor Mater. 2022;46(4):482. https://doi.org/10.1016/j.ensm.2022.01.042.

    Article  Google Scholar 

  23. Li SQ, Wang K, Zhang GF, Li SN, Xu YN, Zhang XD, Zhang X, Zheng SH, Sun XZ, Ma YW. Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv Funct Mater. 2022;32(23):2200796. https://doi.org/10.1002/adfm.202200796.

    Article  CAS  Google Scholar 

  24. Zhang YX, Wu BR, Mu G, Ma CW, Mu DB, Wu F. Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J Energy Chem. 2022;64(1):615. https://doi.org/10.1016/j.jechem.2021.04.013.

    Article  CAS  Google Scholar 

  25. Eshetu GG, Zhang H, Judez X, Adenusi H, Armand M, Passerini S, Figgemeier E. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun. 2021;12(1):5459. https://doi.org/10.1038/s41467-021-25334-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li XR, Su HP, Ma C, Hou KM, Wang J, Lin HZ, Shang YZ, Liu HL. Optimizations of graphitic carbon/silicon hybrids for scalable preparation with high-performance lithium-ion storage. ACS Sustain Chem Eng. 2022;10(17):5590. https://doi.org/10.1021/acssuschemeng.2c00316.

    Article  CAS  Google Scholar 

  27. Xu YL, Dong K, Jie YL, Adelhelm P, Chen YW, Xu L, Yu PP, Kim JH, Kochovski Z, Yu ZL. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives. Adv Energy Mater. 2022;12(19):2200398. https://doi.org/10.1002/aenm.202200398.

    Article  CAS  Google Scholar 

  28. Wang J, Yang Z, Mao BG, Wang YX, Jiang Y, Cao MH. Transgenic engineering on silicon surfaces enables robust interface chemistry. ACS Energy Lett. 2022;7(8):2781. https://doi.org/10.1021/acsenergylett.2c01202.

    Article  CAS  Google Scholar 

  29. Thangadurai V, Chen B. Solid Li- and Na-ion electrolytes for next generation rechargeable batteries. Chem Mater. 2022;34(15):6637. https://doi.org/10.1021/acs.chemmater.2c01475.

    Article  CAS  Google Scholar 

  30. Cheng HR, Sun QJ, Li LL, Zou YG, Wang YQ, Cai T, Zhao F, Liu G, Ma Z, Wahyudi W. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022;7(1):490. https://doi.org/10.1021/acsenergylett.1c02425.

    Article  CAS  Google Scholar 

  31. Wang YM, Liu YC, Tu YQ, Wang Q. Reductive decomposition of solvents and additives toward solid-electrolyte interphase formation in lithium-ion battery. J Phys Chem C. 2020;124(17):9099. https://doi.org/10.1021/acs.jpcc.9b10535.

    Article  CAS  Google Scholar 

  32. Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M. Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Stor Mater. 2017;6(1):26. https://doi.org/10.1016/j.ensm.2016.08.002.

    Article  Google Scholar 

  33. Xiong BQ, Zhou XW, Xu GL, Liu Y, Zhu LK, Hu YC, Shen SY, Hong YH, Wan SC, Liu XC. Boosting superior lithium storage performance of alloy-based anode materials via ultraconformal Sb coating-derived favorable solid-electrolyte interphase. Adv Energy Mater. 2020;10(4):1903186. https://doi.org/10.1002/aenm.201903186.

    Article  CAS  Google Scholar 

  34. Qian JF, Chen Y, Wu L, Cao YL, Ai XP, Yang HX. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun. 2012;48(56):7070. https://doi.org/10.1039/c2cc32730a.

    Article  CAS  Google Scholar 

  35. Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321. https://doi.org/10.1007/s12598-017-0899-4.

    Article  CAS  Google Scholar 

  36. Liu J, Yu LT, Wu C, Wen YR, Yin KB, Chiang FK, Hu RZ, Liu JW, Sun LT, Gu L, Joachim Maier YuY, Zhu M. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017;17(3):2034. https://doi.org/10.1021/acs.nanolett.7b00083.

    Article  CAS  PubMed  Google Scholar 

  37. Dashairya L, Das D, Saha P. Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries. Electrochim Acta. 2020;358(8):136948. https://doi.org/10.1016/j.electacta.2020.136948.

    Article  CAS  Google Scholar 

  38. Luo W, Li F, Gaumet JJ, Magri P, Diliberto S, Zhou L, Mai L. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater. 2018;8(19):1703237. https://doi.org/10.1002/aenm.201703237.

    Article  CAS  Google Scholar 

  39. Yue C, Wu M, Cheng B, Dang M, Liu G, Hu F, Li J. Fabrication of multilayer Si/TiN/Sb NR arrays as anode for 3D Si-based lithium/sodium ion microbatteries. Adv Mater Interfaces. 2020;7(19):2001043. https://doi.org/10.1002/admi.202001043.

    Article  CAS  Google Scholar 

  40. Chen J, Fan XL, Li Q, Yang HB, Khoshi MR, Xu YB, Hwang S, Chen L, Ji X, Yang CY. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy. 2020;5(5):386. https://doi.org/10.1038/s41560-020-0601-1.

    Article  CAS  Google Scholar 

  41. Wang F, Liao XB, Wang HY, Zhao Y, Mao J, Truhlar DG. Bioinspired mechanically interlocking holey graphene@ SiO2 anode. Interdiscip Mater. 2022;1(4):517. https://doi.org/10.1002/idm2.12032.

    Article  CAS  Google Scholar 

  42. Wang Q, Zhu M, Chen G, Dudko N, Li Y, Liu H, Shi L, Wu G, Zhang D. High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv Mater. 2022;34(16):2109658. https://doi.org/10.1002/adma.202109658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51974208, U2003130, 52002297 and U2004120), the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee (No. JCYJ20210324141613032), the Outstanding Youth Foundation of Natural Science Foundation of Natural Science Foundation of Hubei Province (No. 2020CFA099), the Innovation Group of Key Research and Development Program of Hubei Province (Nos. 2021BAA208 and 2022BCA061), the Knowledge Innovation Project of Wuhan City (No. 2022010801010303), National Key R&D Program of China (No. 2022YFB2404800), the Key R&D Projects of Hubei Province (Nos. 2022BCA061, 2021BAA176), City University of Hong Kong Strategic Research Grant (SRG), Hong Kong, China (No. 7005505), and City University of Hong Kong Donation Research Grant (DON-RMG No. 9229021). The authors would like to thank Dr. Zhen Wang of the Analytical & Testing Center of Wuhan University of Science and Technology for assistance on SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Jiang Fu or Biao Gao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, JG., Feng, HQ., Xu, YL. et al. Metallic Sb-stabilized porous silicon with stable SEI and high electron/ion conductivity boosting lithium-ion storage performance. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02632-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02632-w

Keywords

Navigation