Skip to main content
Log in

Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Li-rich layered oxide (LLO), e.g., Li1.12[Mn0.56Ni0.16Co0.08]O2 (LRMO), is considered as a promising cathode material due to its superior Li-storage capability. However, the poor cycling stability and large voltage decay, which are related to the phase transition, limit its industrialization process. Herein, a Mo-doped LRMO (Li1.12[Mn0.56Ni0.16Co0.08]0.98Mo0.02O2, LRMO-Mo2.0%) was successfully synthesized via a simple combination of co-precipitation with high-temperature calcination for solving the mentioned above- disadvantages. Compared with the pristine counterpart, the as-prepared LRMO-Mo2.0% shows more excellent electrochemical performance in terms of rate capability (reversible capacity of 118 mA·h·g−1 at 5 C), cyclic ability (94.3% capacity retention after 100 cycles at 0.2 C) and discharge midpoint voltage decay (0.11 V after 100 cycles). Systematic investigation of structural evolution and electrochemical kinetics elucidate that the synergic effect of robust oxygen framework and layered/spinel heterostructure is the key to its performance improvement. Such synergy helps to stabilize the layered structure by curbing the structural transformation and oxygen escaping during the electrochemical cycling. This work paved the way for the simple and efficient preparation of highly stable LLO cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng JM, Myeong SJ, Cho WR, Yan PF, Xiao J, Wang CM, Cho J, Zhang JG. Li-and Mn-Rich cathode materials: challenges to commercialization. Adv Energy Mater. 2017;7(6):1601284.

    Google Scholar 

  2. Lei W, Yu YJ, Zhang HJ, Jia QL, Zhang SW. Defect engineering of nanostructures: insights into photoelectrochemical water splitting. Mater Today. 2021;52:133.

    Google Scholar 

  3. Liu TF, Yang XK, Nai JW, Wang Y, Liu YJ, Liu CT, Tao XY. Recent development of Na metal anodes: interphase engineering chemistries determine the electrochemical performance. Chem Eng J. 2020;409(1): 127943.

    Google Scholar 

  4. Yu RZ, Zhang ZJ, Jamil S, Chen JC, Zhang XH, Wang WY, Yang ZH, Shu HB, Yang XK. Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl Mater. 2018;10(19):16561.

    CAS  Google Scholar 

  5. Zang Y, Ding CX, Wang XC, Wen ZY, Chen CH. Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance. Electrochim Acta. 2015;168:234.

    CAS  Google Scholar 

  6. Shi JL, Xiao DD, Ge MY, Yu XQ, Chu Y, Huang XJ, Zhang XD, Yin YX, Yang XQ, Guo YG, Gu L, Wang LJ. High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater. 2018;30(9):1705575.

    Google Scholar 

  7. Sun YQ, Fu W, Hu YX, Vaughan J, Wang LZ. The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium-ion batteries. Tungsten. 2021;3(3):245.

    Google Scholar 

  8. Yu HJ, Zhou HS. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett. 2013;4(8):1268.

    CAS  Google Scholar 

  9. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783.

    CAS  Google Scholar 

  10. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.

    CAS  Google Scholar 

  11. Assat G, Iadecola A, Foix D, Dedryvère R, Tarascon JM. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett. 2018;3(11):2721.

    CAS  Google Scholar 

  12. Li B, Xia DG. Anionic redox in rechargeable lithium batteries. Adv Mater. 2017;29(48):1701054.

    Google Scholar 

  13. Guo B, Zhao JH, Fan XM, Zhang W, Li S, Yang ZH, Chen ZX, Zhang WX. Aluminum and fluorine codoping for promotion of stability and safety of lithium-rich layered cathode material. Electrochim Acta. 2017;236:171.

    CAS  Google Scholar 

  14. Wu F, Xue Q, Li L, Zhang XX, Huang YX, Fan ES, Chen RJ. The positive role of (NH4)3AlF6 coating on Li[Li0.2Ni0.2Mn0.6]O2 oxide as the cathode material for lithium-ion batteries. RSC Adv. 2017;7(2):1191.

    CAS  Google Scholar 

  15. Qiu B, Zhang MH, Wu LJ, Wang J, Xia YG, Qian DN, Liu HD, Hy S, Chen Y, An K, Zhu YM, Liu ZP, Meng YS. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun. 2016;7(1):1.

    Google Scholar 

  16. Meng JX, Xu LS, Ma QX, Yang MQ, Fang YZ, Wan GY, Li RH, Yuan JJ, Zhang XK, Yu HJ, Liu LL, Liu TF. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv Func Mater. 2022;32(19):2113013.

    CAS  Google Scholar 

  17. Zheng JM, Gu M, Xiao J, Polzin BJ, Yan PF, Chen XL, Wang CM, Zhang JG. Functioning mechanism of AlF3 coating on the Li-and Mn-Rich cathode materials. Chem Mater. 2014;26(22):6320.

    CAS  Google Scholar 

  18. An J, Shi LY, Chen GR, Li MS, Liu HJ, Yuan S, Chen SM, Zhang DS. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A. 2017;5(37):19738.

    CAS  Google Scholar 

  19. Ma QX, Li RH, Zheng RJ, Liu YL, Huo H, Dai CS. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J Power Sources. 2016;331:112.

    CAS  Google Scholar 

  20. Zubair M, Li GY, Wang BY, Wang L, Yu HJ. Electrochemical kinetics and cycle stability improvement with Nb doping for lithium-rich layered oxides. ACS Appl Energy Mater. 2019;2(1):503.

    CAS  Google Scholar 

  21. Gao S, Zhan XW, Cheng YT. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources. 2019;410–411:45.

    Google Scholar 

  22. Meng JX, Wang ZC, Xu LS, Xu HZ, Zhang SC, Yan Q. Enhanced structural stability and improved electrochemical performance of layered lithium-rich cathode materials via tellurium doping. J Electrochem Soc. 2017;164(12):A2594.

    CAS  Google Scholar 

  23. Qiao QQ, Qin L, Li GR, Wang YL, Gao XP. Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode for advanced lithium-ion batteries. J Mater Chem A. 2015;3(34):17627.

    CAS  Google Scholar 

  24. Xie Y, Saubanere M, Doublet ML. Requirements for reversible extra capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ Sci. 2017;10(1):266.

    CAS  Google Scholar 

  25. Saubanère M, Mccalla E, Tarascon JM, Douet ML. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984.

    Google Scholar 

  26. Huang JJ, Liu HD, Hu T, Meng YS, Luo J. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J Power Sources. 2018;375:21.

    CAS  Google Scholar 

  27. Deng YP, Yin ZW, Wu ZG, Zhang SJ, Fu F, Zhang T, Li JT, Huang L, Sun SG. Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries. ACS Appl Mater Interfaces. 2017;9(25):21065.

    CAS  Google Scholar 

  28. Liu HS, Harris KJ, Jiang M, Wu Y, Goward GR, Botton GA. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano. 2018;12(3):2708.

    CAS  Google Scholar 

  29. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater. 2012;24(9):1192.

    CAS  Google Scholar 

  30. Lee ES, Huq A, Manthiram A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries. J Power Sources. 2013;240:193.

    CAS  Google Scholar 

  31. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Hassine MB, DuPont L, Tarascon JM. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827.

    CAS  Google Scholar 

  32. Xu B, Fell CR, Chi MF, Meng YS. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium-ion batteries: a joint experimental and theoretical study. Energ Environ Sci. 2011;4(6):2223.

    CAS  Google Scholar 

  33. Chong SK, Wu YF, Chen YZ, Shu CY, Liu YN. A strategy of constructing spherical core-shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 cathode material for high-performance lithium-ion batteries. J Power Sources. 2017;356:153.

    CAS  Google Scholar 

  34. Ma QX, Wang YQ, Lai FL, Meng JX, Dmytro S, Zhou LF, Yang MQ, Zhang Q, Zhong SW. Induction and maintenance of local structural durability for high-energy nickel-rich layered oxides. Small Methods. 2022;6(6):2200255.

    CAS  Google Scholar 

  35. Sun YK, Lee BR, Noh HJ, Wu HM, Myung ST, Amine K. A Novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. J Mater Chem. 2011;21(27):10108.

    CAS  Google Scholar 

  36. Yang X, Tang YW, Shang GZ, Wu J, Lai YQ, Li J, Qu YH, Zhang ZA. Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl Mater Interfaces. 2019;11(35):32015.

    CAS  Google Scholar 

  37. Bao YB, Wang J, Qian YX, Deng YF, Yang XF, Chen GH. An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material. Electrochim Acta. 2020;330: 135240.

    CAS  Google Scholar 

  38. Fan JM, Li GS, Li GH, Xie DJ, Li BY, Li LP. Pristine surface investigation of Li 1.2Mn0.54Ni0.13Co0.13O2 toward improving capacity and rate-capability for lithium-ion batteries. Electrochim Acta. 2017;245:118.

    CAS  Google Scholar 

  39. Yu FD, Que LF, Wang ZB, Zhang Y, Xue Y, Liu BS, Gu DM. Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem. 2016;4(47):18416.

    CAS  Google Scholar 

  40. Wu B, Yang XK, Jiang X, Zhang Y, Shu HB, Gao P, Liu L, Wang XY. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv Funct Mater. 2018;28(37):1803392.

    Google Scholar 

  41. Deng YP, Fu F, Wu ZG, Yin ZW, Zhang T, Li JT, Huang L, Sun SG. Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A. 2016;4(1):257.

    CAS  Google Scholar 

  42. Meng FB, Guo HJ, Wang ZX, Wang JX, Yan GH, Wu XW, Li XH, Zhou LJ. Modification of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with α-MoO3 via a simple wet chemical coating process. Appl Surf Sci. 2019;479:1277.

    CAS  Google Scholar 

  43. Wu F, Li N, Su YF, Zhang LJ, Bao LY, Wang J, Chen L, Zheng Y, Dai LQ, Peng JY, Chen S. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014;14(6):3550.

    CAS  Google Scholar 

  44. Knight JC, Nandakumar P, Kan WH, Manthiram A. Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides. J Mater Chem A. 2015;3(5):2006.

    CAS  Google Scholar 

  45. Yu FD, Que LF, Wang ZB, Zhang Y, Xue Y, Liu BS, Gu DM. Layered-spinel capped nanotube assembled 3D Li rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A. 2016;4(47):18416.

    CAS  Google Scholar 

  46. Ma Q, Chen Z, Zhong S, Meng J, Lai F, Li Z, Cheng C, Zhang L, Liu T. Na substitution-induced oxygen vacancies achieved a high transition metal capacity in a commercial Li-rich cathode. Nano Energy. 2021;81: 105622.

    CAS  Google Scholar 

  47. Yang CH, Ou X, Xiong XH, Zheng FH, Hu RZ, Chen Y, Liu ML, Huang K. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci. 2017;10(1):107.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51964017, Grant No. 51874151), the Jiangxi Provincial Natural Science Foundation (Grant No. 20212BAB214004), the Jiangxi Provincial Education Office Natural Science Fund Project (Grant No. GJJ201413), and the Jiangxi University of Science and Technology College Student Innovation and Entrepreneurship Training Program Support Project (Grant No. DC2019-042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Xia Meng or Quan-Xin Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, KQ., Yang, MQ., Meng, JX. et al. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten 4, 323–335 (2022). https://doi.org/10.1007/s42864-022-00173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00173-2

Keywords

Navigation