Skip to main content
Log in

Flotation separation of feldspar from quartz using sodium fluosilicate as a selective depressant

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The physical and chemical properties of feldspar and quartz are highly similar, thus they cannot be easily separated effectively. In this work, the flotation separation of feldspar from quartz using sodium fluosilicate (Na2SiF6; SF) as a selective depressant was investigated. Moreover, the influence mechanism of SF on the selective flotation separation of feldspar and quartz was investigated via flotation tests, chemical analysis of flotation solution, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The results of the flotation tests show that feldspar and quartz without SF treatment have good floatability. After SF treatment, feldspar still has good floatability, whereas quartz has significantly reduced floatability. Flotation solution chemical analysis shows that the functional group plays an important role in depressing the quartz is [SiF6]2−. FTIR, XPS and contact angle analysis results show that [SiF6]2− is adsorbed only on the surface of quartz. Thus, a thin hydrophilic SiOF layer is generated on the surface, which interferes with the adsorption of the collector on the surface of the quartz. This phenomenon leads to a significant reduction in quartz’s floatability. Therefore, SF has a good ability to separate feldspar from quartz by flotation.

Graphical abstract

摘要

长石和石英的物理和化学性质非常相似。因此, 它们很难实现有效的浮选分离。本文研究了以氟硅酸钠 (Na2SiF6; SF) 为选择性抑制剂对长石和石英进行浮选分离。此外, 通过浮选试验、浮选液化学分析、傅立叶变换红外光谱 (FTIR) 、X射线光电子能谱 (XPS) 和接触角分析, 研究了SF对长石和石英选择性浮选分离的影响机理。浮选试验结果表明, 未经SF处理的长石和石英具有良好的可浮性。经过SF处理后, 长石仍具有良好的可浮性, 而石英则显著降低了可浮性。浮选溶液化学分析表明, 在抑制石英中起重要作用的官能团是[SiF6]2− 。FTIR、XPS和接触角分析结果表明, [SiF6]2−仅吸附在石英表面。因此, 在表面上产生薄的亲水性SiOF层, 这干扰了收集器在石英表面上的吸附。这种现象导致石英的可浮性显著降低。因此, SF具有良好的浮选分离长石和石英的能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu YJ, Tong H, Liu GD, Li Y, Tan QF. Cutting model considering damage layer thickness for ultra-precision turning of quartz glass. Int J Adv Manuf Tech. 2023;126(9):1. https://doi.org/10.1007/s00170-023-11366-5.

    Article  CAS  Google Scholar 

  2. Wang XY, Liu WG, Duan H, Liu WB, Shen YB, Gu XW, Qiu JP, Jia CY. Potential application of an eco-friendly amine oxide collector in flotation separation of quartz from hematite. Sep Purif Technol. 2021;278:119668. https://doi.org/10.1016/j.seppur.2021.119668.

    Article  CAS  Google Scholar 

  3. Sun N, Sun W, Guan QJ, Wang L. Green and sustainable recovery of feldspar and quartz from granite tailings. Miner Eng. 2023;203:108351. https://doi.org/10.1016/j.mineng.2023.108351.

    Article  CAS  Google Scholar 

  4. Shen LF, Sun N, Xu R, Sun W, Wang L. Adsorption mechanisms of activated surface of quartz and feldspar with mixed NaOL/DDA. Sep Purif Technol. 2023;314:123501. https://doi.org/10.1016/j.seppur.2023.123501.

    Article  CAS  Google Scholar 

  5. Jiang PG, Yu XB, Xiao YY, Zhao S, Peng WJ. Study on hydrogen adsorption on WO3(001) surface by density functional theory calculation. Tungsten. 2023;5(04):558. https://doi.org/10.1007/s42864-022-00195-w.

    Article  Google Scholar 

  6. Yang QY, Yu Z, Li Y, Zhang W, Yuan HW, Li HJ, Ma W, Zhu SM, Li S. Understanding and modifications on lithium deposition in lithium metal batterie. Rare Met. 2022;41(8):2800. https://doi.org/10.1007/s12598-022-01994-3.

    Article  CAS  Google Scholar 

  7. Zhou Y, Niu PH, Li ZH, Zhang PP, Su MR, Dou AC, Li XW, Liu YJ. Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode. Rare Met. 2022;41(6):1880. https://doi.org/10.1007/s12598-022-01961-y.

    Article  CAS  Google Scholar 

  8. Fan MC, Wozny J, Gong J, Kang YQ, Wang XS, Zhang ZX, Zhou GM, Zhao Y, Li BH, Kang FY. Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process. Rare Met. 2022;41(6):1843. https://doi.org/10.1007/s12598-021-01918-7.

    Article  CAS  Google Scholar 

  9. Lv F, Du H, Qu T, Shi L, Tian Y, Dai YN. Vacuum carbothermal reduction of spodumene ore to extract Li and simultaneous recovery of Si and Al. Chin J Rare Met. 2023;47(4):547. https://doi.org/10.13373/j.cnki.cjrm.XY20120041.

    Article  Google Scholar 

  10. Zhan JX, Lu JS, Wang D, Liu ZY, Guo K, Xie B. Scalable recycling of feldspar slime into high-quality concentrates by removal of colored minerals using the combined beneficiation processes. Sep Purif Technol. 2023;309: 123061. https://doi.org/10.1016/j.seppur.2022.123061.

    Article  CAS  Google Scholar 

  11. Luo XP, Zhang YB, Zhou HP, Xie FX, Yang ZZ, Zhang BY, Luo CG. Flotation separation of spodumene and albite with activation of calcium ion hydrolysate components. Rare Met. 2022;41(11):3919. https://doi.org/10.1007/s12598-022-02110-1.

    Article  CAS  Google Scholar 

  12. Jiang XS, Chen J, Ban BY, Song WF, Chen C, Yang XY. Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz-feldspar mixed minerals under neutral pH conditions. Miner Eng. 2022;188: 107850. https://doi.org/10.1016/j.mineng.2022.107850.

    Article  CAS  Google Scholar 

  13. Zhang XK, Zhang J, Su H, Qi T, Wang LN. Recovery of lithium from the mother solution of lithium precipitation in lithium ore processing. Chin J Rare Met. 2022;46(1):67. https://doi.org/10.13373/j.cnki.cjrm.XY19060040.

    Article  Google Scholar 

  14. Xu QH, Liang ZA, Duan H, Sun ZM, Wu WX. The efficient utilization of low-grade scheelite with X-ray transmission sorting and mixed collectors. Tungsten. 2023;5(4):570. https://doi.org/10.1007/s42864-022-00194-x.

    Article  Google Scholar 

  15. Li RJ, Luo XM, Wen SM, Li C, Wei DY, Yang W, Zhang Y, Zhu YG, Wang YF. Three-phase froth stability in hematite flotation using DDA as a collector. Miner Eng. 2023;195: 108023. https://doi.org/10.1016/j.mineng.2023.108023.

    Article  CAS  Google Scholar 

  16. Dai LQ, Feng B, Zhang LZ, Chen YG, Bayoundoula J. Selective flotation separation of spodumene and quartz with carboxylated chitosan as depressant. Miner Eng. 2023;203: 108343. https://doi.org/10.1016/j.mineng.2023.108343.

    Article  CAS  Google Scholar 

  17. Heyes GW, Allan GC, Bruckard WJ, Sparrow GJ. Review of flotation of feldspar. Miner Process Extr Metall. 2012;121(2):72. https://doi.org/10.1179/1743285512Y.0000000004.

    Article  ADS  CAS  Google Scholar 

  18. Wang WQ, Cong JY, Deng J, Weng XQ, Lin YM, Huang Y, Peng TF. Developing effective separation of feldspar and quartz while recycling tailwater by HF pretreatment. Miner (Basel, Switz). 2018;8(4):149. https://doi.org/10.3390/min8040149.

    Article  CAS  Google Scholar 

  19. Larsen E, Kleiv RA. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner Eng. 2016;98:49. https://doi.org/10.1016/j.mineng.2016.07.021.

    Article  CAS  Google Scholar 

  20. Chen YL, Guo XY, Wang QM, Tian QH, Huang SB, Zhang JX. Tungsten and arsenic substance flow analysis of a hydrometallurgical process for tungsten extracting from wolframite. Tungsten. 2021;3(3):348. https://doi.org/10.1007/s42864-021-00090-w.

    Article  Google Scholar 

  21. Xu B, Liu S, Li HQ, Zhao YL, Li HC, Song SX. A novel chemical scheme for flotation of rutile from eclogite tailing. Results Phys. 2017;7:2893. https://doi.org/10.1016/j.rinp.2017.07.063.

    Article  ADS  Google Scholar 

  22. Song SX, Lopez-Valdivieso A, Lu SC, Ouyang J. Selective dispersion in a diaspore–rutile suspension by sodium fluorosilicate. Powder Technol. 2002;123:178. https://doi.org/10.1016/S0032-5910(01)00449-1.

    Article  CAS  Google Scholar 

  23. Xu R, Liu J, Sun W, Wang L. Insights into the synergistic adsorption mechanism of mixed SDS/DDA collectors on biotite using quartz crystal microbalance with dissipation. Sep Purif Technol. 2023;310: 123049. https://doi.org/10.1016/j.seppur.2022.123049.

    Article  CAS  Google Scholar 

  24. Zhang XR, Zhu YG, Xie Y, Shang YB, Zheng GB. A novel macromolecular depressant for reverse flotation: synthesis and depressing mechanism in the separation of hematite and quartz. Sep Purif Technol. 2017;186:175. https://doi.org/10.1016/j.seppur.2017.05.051.

    Article  CAS  Google Scholar 

  25. Xie RQ, Zhu YM, Liu J, Li YJ. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz. Sep Purif Technol. 2021;264: 118445. https://doi.org/10.1016/j.seppur.2021.118445.

    Article  CAS  Google Scholar 

  26. Yang L, Li X, Li WF, Yan XK, Zhang HJ. Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Sep Purif Technol. 2019;227: 115701. https://doi.org/10.1016/j.seppur.2019.115701.

    Article  CAS  Google Scholar 

  27. Yang P, Hu X, Zi F, Yang B, Wang Q, Chen Y, Chen S. Synergistic enhancement of fine-kaolinite-particle hydrophobic agglomeration by combining dodecylamine with octanoic acid. Miner Eng. 2020;155: 106444. https://doi.org/10.1016/j.mineng.2020.106444.

    Article  CAS  Google Scholar 

  28. Liu WG, Liu WB, Wang XY, Wei DZ, Wang BY. Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite. Sep Purif Technol. 2016;162:188. https://doi.org/10.1016/j.seppur.2016.02.033.

    Article  CAS  Google Scholar 

  29. Dong LY, Jiao F, Qin WQ, Zhu HL, Jia WH. Selective depressive effect of sodium fluorosilicate on calcite during scheelite flotation. Miner Eng. 2019;131(1):262. https://doi.org/10.1016/j.mineng.2018.11.030.

    Article  CAS  Google Scholar 

  30. Cao Z, Wu X, Khoso SA, Zhang WB, Liu YL, Tian MJ, Wang JL. Effect mechanism of nonane-1,1-bisphosphonic acid as an alternative collector in monazite flotation: experimental and calculational studies. J Rare Earths. 2021;40(5):822. https://doi.org/10.1016/j.jre.2021.05.004.

    Article  CAS  Google Scholar 

  31. Yu HY, Zhu YG, Lu L, Hu XX, Li SQ. Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector. Int J Min Sci Technol. 2023;33(6):783. https://doi.org/10.1016/j.ijmst.2022.12.013.

    Article  CAS  Google Scholar 

  32. Sun HR, Yin WZ. Selective flotation separation of magnesite from quartz by palmitoyl trimethylammonium chloride. Sep Purif Technol. 2022;295: 121201. https://doi.org/10.1016/j.seppur.2022.121201.

    Article  CAS  Google Scholar 

  33. Chang S, Li M, Gao K, Zhang DL, Duan HJ, Ma LL, Ruan Z. Mechanism of phthalic acid collector in flotation separation of fluorite and rare earth. J Rare Earths. 2021;40(1):118. https://doi.org/10.1016/j.jre.2020.11.002.

    Article  CAS  Google Scholar 

  34. Ouasri A, Lambarki F, Rhandour A, Zahariev TK, Trendafilova N, Georgieva I. Solid state DFT modeling and vibrational characterisation of butylenediammonium and hexylenediammonium hexafluorosilicate, NH3(CH2)nNH3SiF6 (n = 4 and 6). Vib Spectrosc. 2017;88:83. https://doi.org/10.1016/j.vibspec.2016.11.006.

    Article  CAS  Google Scholar 

  35. Faycel B, Slim E, Riadh M, Mohsen G. Experimental and theoretical studies of the structural, vibrational and optical properties of a new hybrid material (C5H6N2Cl)2SiF6. J Mol Struct. 2021;1232: 129990. https://doi.org/10.1016/j.molstruc.2021.129990.

    Article  CAS  Google Scholar 

  36. Tang RL, Lian X, Yao WD, Liu WL, Guo SP. K3Na(TaF7)(SiF6): a mixed-anion pentanary fluoride with zero-dimensional anions exhibiting a large band gap. Dalton Trans. 2021;50(45):16562. https://doi.org/10.1039/d1dt03320d.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng ZYY, Zhu YM, Li YJ, Butt S. Experimental and MD simulation of 3-dodecyloxypropanamine and 3-tetradecyloxypropylamine adsorbed onto quartz (1 0 1) surface. Int J Min Sci Technol. 2021;31(6):1033. https://doi.org/10.1016/j.ijmst.2021.10.007.

    Article  CAS  Google Scholar 

  38. Liu WG, Peng XY, Liu WB, Zhang NX, Wang XY. A cost-effective approach to recycle serpentine tailings: destruction of stable layered structure and solvent displacement crystallization. Int J Min Sci Technol. 2022;32(3):595. https://doi.org/10.1016/j.ijmst.2022.03.004.

    Article  CAS  Google Scholar 

  39. Mweene L, Khanal GP, Nambaje C. Experimental study on the separation of quartz from pyrite using alginate as a selective depressant substantiated by theoretical analysis on intermolecular bonding. Sep Purif Technol. 2021;276: 119251. https://doi.org/10.1016/j.seppur.2021.119251.

    Article  CAS  Google Scholar 

  40. Song C, Zhou YY, Liu QJ, Deng JY, Li SM, Gao LK, Yu L. Effects of BaCl2 on K-feldspar flotation using dodecyl amine chloride under natural pH. Trans Nonferrous Met Soc China. 2018;28(11):2335. https://doi.org/10.1016/S1003-6326(18)64878-2.

    Article  CAS  Google Scholar 

  41. Dementjev AP, Ivanova OP, Vasilyev LA, Naumkin AV, Nemirovsky DM, Shalaev DY. Altered layer as sensitive initial chemical state indicator. J Vac Sci Technol, A. 1994;12(2):423. https://doi.org/10.1116/1.579258.

    Article  CAS  Google Scholar 

  42. Chen Q, Tian MM, Zheng HF, Luo HH, Li HQ, Song SX, He DS, Jiang XH. Flotation of rutile from almandine using sodium fluorosilicate as the depressant. Colloid Surf A. 2020;599: 124918. https://doi.org/10.1016/j.colsurfa.2020.124918.

    Article  CAS  Google Scholar 

  43. Jeong SH, Nishii JJ, Park HR, Kim JK, Lee BT. Influence of fluorine doping on SiOxFy films prepared from a TEOS/O2/CF4 mixture using a plasma enhanced chemical vapor deposition system. Surf Coat Technol. 2003;168(1):51. https://doi.org/10.1016/S0257-8972(03)00012-4.

    Article  CAS  Google Scholar 

  44. Duncan CT, Biradar AV, Rangan S, Mishler RE II, Asefa T. Trimming nanostructured walls while fluorinating their surfaces: a route to making and widening pores of nanoporous materials and efficient catalysts. Chem Mater. 2010;22(17):4950. https://doi.org/10.1021/cm101041a.

    Article  CAS  Google Scholar 

  45. Marcus L, Uwe B, Christoph G, Martin K, Sebastian PK, Martin W, Edwin K. Etching silicon with HF-HNO3-H2SO4/H2O mixtures- unprecedented formation of trifluorosilane, hexafluorodisiloxane, and Si–F surface groups. Eur J Inorg Chem. 2012;2012(34):5714. https://doi.org/10.1002/ejic.201200674.

    Article  CAS  Google Scholar 

  46. Ohya Y, Tomura M, Ishikawa K, Sekine M, Hori M. Formation of a SiOF reaction intermixing layer on SiO2 etching using C4F6/O2/Ar plasmas. J Vac Sci Technol, A. 2016;34(4):040602. https://doi.org/10.1116/1.4949570.

    Article  CAS  Google Scholar 

  47. Kim JK, Jeong SH, Kim BS, Shim SH. Characterization and preparation of SiO2 and SiOF films using an RF PECVD technique from TEOS/O2 and TEOS/O2/CF4 precursors. J Phys D: Appl Phys. 2005;37(17):2425. https://doi.org/10.1088/0022-3727/37/17/013.

    Article  ADS  CAS  Google Scholar 

  48. Lee WJ, Cho TY, Eom JH, Park JS, Ryu J, Cho S. Hygroscopic fluorine doped silicon oxide thin film based large area three layered moisture barrier using a roll to roll microwave plasma enhanced chemical vapor deposition system. Plasma Process Polym. 2022;19(9):1. https://doi.org/10.1002/ppap.202200001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Project of the National Natural Science Foundation of China (No. 52274263) and the Key R&D Plan Projects in Jiangxi Province (No. 20214BBG74001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ping Luo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Luo, XP., Liu, ZS. et al. Flotation separation of feldspar from quartz using sodium fluosilicate as a selective depressant. Rare Met. 43, 1288–1300 (2024). https://doi.org/10.1007/s12598-024-02629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02629-5

Keywords

Navigation