Skip to main content

Advertisement

Log in

In-situ SEM characterization of fracture mechanism of TiB/Ti-2Al-6Sn titanium matrix composites after electroshocking treatment

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this article, in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite (TMC) was conducted before and after electroshocking treatment (EST). After EST, the tensile strength increased by 113.2 MPa. The effect of EST on the tensile strength and fracture behavior of TiB was investigated using in-situ characterization of the fracture morphology and crack propagation path of the matrix and TiB. Before EST, TiB fracture introduced cracks that extended into the matrix, resulting in material failure. After EST, the refined TiB improved the bearing capacity of the matrix, thereby improving TMC strength. Moreover, after EST, the cracks were introduced into the matrix, and resulting the fracture of matrix first. With an increase in the external load, cracks in the matrix were observed to propagate to TiB, and the refined TiB was fractured, detached, and pulled out, resulting in the formation of pores. Analyzing the propagation path of the main crack after EST showed that the deflection angle of the main crack increased. The microstructure of the fracture surface indicated that the fracture of the matrix was plastic, whereas that of TiB was brittle. After EST, the size and area of the dimples increased, confirming the increase in plasticity. The results revealed that the comprehensive mechanical properties of TiB/Ti-2Al-6Sn improved after EST. Hence, EST is an efficient method for tailoring the microstructures and mechanical properties of TMCs.

Graphical abstract

摘要

本文采用原位扫描电子显微镜 (SEM) 对TiB/Ti-2Al-6Sn钛基复合材料 (TMC) 在电冲击处理 (EST) 前后的拉伸性能进行了原位表征。EST后, 拉伸强度提高了113.2 MPa。通过原位表征基体和TiB的断裂形态和裂纹扩展路径, 研究了EST对TiB抗拉强度和断裂行为的影响。在EST之前, TiB断裂引入裂纹并扩展到基体中, 导致材料失效。EST后, 细化后的TiB提高了基体的承载能力, 从而提高了TMC强度。EST后, 在原位拉伸中基体引入裂纹, 首先导致基体增强体界面开裂。随着外部载荷的增加, 裂纹向TiB扩展, 细化的TiB开始断裂、脱粘并拔出, 导致孔隙的形成。对EST后主裂纹扩展路径的分析表明, 主裂纹的偏转角增大。断裂表面的微观结构表明, 基体的为塑性断裂, 而TiB为脆性断裂。EST后韧窝的尺寸和面积增加, 塑性提高。结果表明, EST后, TiB/Ti-2Al-6Sn的综合力学性能得到改善。因此, EST是一种调控TMCs微观结构和力学性能的有效方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anandajothi M, Ramanathan S, Ananthi V, Narayanasamy P. Fabrication and characterization of Ti6Al4V/TiB2–TiC composites by powder metallurgy method. Rare Met. 2017;36(10):806. https://doi.org/10.1007/s12598-016-0732-5.

    Article  CAS  Google Scholar 

  2. Wang ZW, Cheng HC, Lv YQ, Zhang ZW, Fan JL, Zhang HB, Liu B, Ma ZY. Effect of TiC content on the microstructure and mechanical properties of Ti-30Mo-xTiC composites. Int J Refract Metal Hard Mater. 2022;107:105879. https://doi.org/10.1016/j.ijrmhm.2022.105879.

    Article  CAS  Google Scholar 

  3. Zhang XJ, Yu WJ, Wang J, Wang P, Liu ZH, He M, Yang, ZR. Rapid in-situ synthesis, microstructure and mechanical properties of titanium matrix composites with micro/nano-sized TiB/TiC hybrid structures. Vacuum.2023;207:111635.https://doi.org/10.1016/j.vacuum.2022.111635.

  4. Xu XH, Yang YQ, Luo X, Qin L, Lou JH, Sun Q. Finite element modeling of consolidation process of SiC fiber-reinforced titanium matrix composites via matrix-coated fiber method. Rare Met. 2015;34(12):844. https://doi.org/10.1007/s12598-014-0388-y.

    Article  CAS  Google Scholar 

  5. Yang FY, Li AB, Huang LJ, Cheng Y, Geng L. Study on the fabrication and heat treatment of the sheet material of in situ TiBw/Ti60 composites. Rare Met. 2011;30(1):614. https://doi.org/10.1007/s12598-011-0357-z.

    Article  CAS  Google Scholar 

  6. Liao Z, Abdelhafeez A, Li H, Yang Y, Diaz OG, Axinte D. State-of-the-art of surface integrity in machining of metal matrix composites. Int J Mach Tools Manuf. 2019;143:63. https://doi.org/10.1016/j.ijmachtools.2019.05.006.

    Article  Google Scholar 

  7. Mashabela M, Maringa M, Dzogbewu T. Nanoparticulate reinforced composites and their application to additively manufactured TI6AL4V for use in the aerospace sector. Manuf Rev. 2022;9:29. https://doi.org/10.1051/mfreview/2022027.

    Article  CAS  Google Scholar 

  8. Zheng YF, Xu LJ, Yu JX, Liang ZQ, Xue X, Xiao SL, Tian J, Chen YY. Effect of TiB, TiC and Y2O3 on tensile properties and creep behavior at 650 °C of titanium matrix composites. J Alloy Compd. 2022;908:164699. https://doi.org/10.1016/j.jallcom.2022.164699.

    Article  CAS  Google Scholar 

  9. Zhang XJ, Song F, Wei ZP, Yang WC, Dai ZK. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater Sci Eng A. 2017;705:153. https://doi.org/10.1016/j.msea.2017.08.079.

    Article  CAS  Google Scholar 

  10. Feng YJ, Cui GR, Zhang WC, Chen WZ, Yu Y. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by pre-sintering and canned extrusion. J Alloy Compd. 2018;738:164. https://doi.org/10.1016/j.jallcom.2017.12.132.

    Article  CAS  Google Scholar 

  11. Li SF, Kondoh K, Imai H, Chen B, Jia L, Umeda J. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater Sci Eng A. 2015;628:75. https://doi.org/10.1016/j.msea.2015.01.033.

    Article  CAS  Google Scholar 

  12. Feng HB, Zhou Y, Jia DC, Meng QC. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos Sci Technol. 2004;64(16):2495. https://doi.org/10.1016/j.compscitech.2004.05.013.

    Article  CAS  Google Scholar 

  13. Zherebtsov S, Ozerov M, Klimova M, Stepanov N, Vershinina T, Ivanisenko Y, Salishchev G. Effect of high-pressure torsion on structure and properties of Ti-15Mo/TiB metal-matrix composite. Materials. 2018;11(12):2426. https://doi.org/10.3390/ma11122426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA. Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol. 2019;102(5):1689. https://doi.org/10.1007/s00170-018-03281-x.

  15. Koo MY, Park JS, Park MK, Kim KT, Hong SH. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites. Scripta Mater. 2012;66(7):487. https://doi.org/10.1016/j.scriptamat.2011.12.024.

    Article  CAS  Google Scholar 

  16. Ozerov M, Klimova M, Stepanov N, Zherebtsov S. Microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature deformation. Materials Physics and Mechanics. 2018;38(1):54. https://doi.org/10.18720/MPM.3812018_8.

  17. Ozerov M, Klimova M, Sokolovsky V, Stepanov N, Popov A, Boldin M, Zherebtsov S. Evolution of microstructure and mechanical properties of Ti/TiB metal-matrix composite during isothermal multiaxial forging. J Alloy Compd. 2019;770:840. https://doi.org/10.1016/j.jallcom.2018.08.215.

    Article  CAS  Google Scholar 

  18. Chen B, Shen J, Ye X, Jia L, Li S, Umeda J, Takahashi M, Kondoh K. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 2017;140:317. https://doi.org/10.1016/j.actamat.2017.08.048.

    Article  CAS  Google Scholar 

  19. Hussein M, Azeem M, Kumar AM, Al-Aqeeli N, Ankah N, Sorour A. Influence of thermal treatment on the microstructure, mechanical properties, and corrosion resistance of newly developed Ti20Nb13Zr biomedical alloy in a simulated body environment. J Mater Eng Perform. 2019;28(3):1337. https://doi.org/10.1007/s11665-019-03908-4.

    Article  CAS  Google Scholar 

  20. Huang LJ, An Q, Geng L, Wang S, Jiang S, Cui XP, Zhang R, Sun FB, Jiao Y, Chen X, Wang CY. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv Mater. 2021;33(6):2000688. https://doi.org/10.1002/adma.202000688.

    Article  CAS  Google Scholar 

  21. Huang LJ, Geng L, Li AB, Yang FY, Peng HX. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scripta Mater. 2009;60(11):996. https://doi.org/10.1016/j.scriptamat.2009.02.032.

    Article  CAS  Google Scholar 

  22. Zherebtsov S, Ozerov M, Povolyaeva E, Sokolovsky V, Stepanov N, Moskovskikh D, Salishchev G. Effect of hot rolling on the microstructure and mechanical properties of a Ti-15Mo/TiB metal-matrix composite. Metals. 2020;10(1):40. https://doi.org/10.3390/met10010040.

    Article  CAS  Google Scholar 

  23. Zhang WJ, Song XY, Hui SX, Ye WJ, Wang WQ. Phase precipitation behavior and tensile property of a Ti–Al–Sn–Zr–Mo–Nb–W–Si titanium alloy. Rare Met. 2018;37(12):1064. https://doi.org/10.1007/s12598-015-0666-3.

    Article  CAS  Google Scholar 

  24. Song YL, Wu BJ, Zhang L, Zhao ZM. Ballistic performance of laminated composite with TiB2 based ceramic to Ti-6Al-4V alloy in continuously-graded microstructure. Key Eng Mater. 2015;633:357. https://doi.org/10.4028/www.scientific.net/KEM.633.357.

    Article  Google Scholar 

  25. Zhu YH, To S, Lee WB, Liu XM, Jiang YB, Tang GY. Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy. Mater Sci Eng, A. 2009;501(1):125. https://doi.org/10.1016/j.msea.2008.09.080.

    Article  CAS  Google Scholar 

  26. Konovalov S, Komissarova I, Ivanov Y, Gromov V, Kosinov D. Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0. J Mater Res Tech. 2019;8(1):1300. https://doi.org/10.1016/j.jmrt.2018.09.008.

    Article  CAS  Google Scholar 

  27. Wang ZJ, Song H. Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet. J Alloy Compd. 2009;470(1):522. https://doi.org/10.1016/j.jallcom.2008.03.027.

    Article  CAS  Google Scholar 

  28. Lu ZC, Guo CH, Li P, Wang ZQ, Chang YP, Tang GY, Jiang FC. Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy. J Alloy Compd. 2017;708:834. https://doi.org/10.1016/j.jallcom.2017.03.085.

    Article  CAS  Google Scholar 

  29. Xie LC, Wu YY, Yao YP, Hua L, Wang LQ, Zhang LC, Lu WJ. Refinement of TiB reinforcements in TiB/Ti-2Al-6Sn titanium matrix composite via electroshock treatment. Mater Charact. 2021;180:111395. https://doi.org/10.1016/j.matchar.2021.111395.

    Article  CAS  Google Scholar 

  30. Wu WL, Song YL, Wang ZQ, Ning SR, Hua L. Solid phase transformation of Ti–6.6Al–3.4Mo alloy induced by electroshocking treatment. J Mater Sci. 2020;55(5):2245. https://doi.org/10.1007/s10853-019-04065-8.

  31. Xie LC, Guo HJ, Song YL, Hua L, Wang LQ, Zhang LC. Novel approach of electroshock treatment for defect repair in near-β titanium alloy manufactured via directed energy deposition. Metall and Mater Trans A. 2021;52(2):457. https://doi.org/10.1007/s11661-020-06098-0.

    Article  CAS  Google Scholar 

  32. Liu C, Yin F, Xie LC, Qian DS, Song YL, Wu WL, Wang LQ, Zhang LC, Hua L. Evolution of grain boundary and texture in TC11 titanium alloy under electroshock treatment. J Alloy Compd. 2022;904:163969. https://doi.org/10.1016/j.jallcom.2022.163969.

    Article  CAS  Google Scholar 

  33. Hua L, Liu YL, Qian DS, Xie LC, Wang F, Wu M. Mechanism of void healing in cold rolled aeroengine M50 bearing steel under electroshocking treatment: A combined experimental and simulation study. Mater Char. 2022:111736. https://doi.org/10.1016/j.matchar.2022.111736.

  34. Wang F, Qian DS, Hua L, Mao HJ, Xie LC. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment. Sci Rep. 2019;9(1):1. https://doi.org/10.1038/s41598-019-47919-6.

    Article  CAS  Google Scholar 

  35. Liu C, Xie LC, Qian DS, Hua L, Wang LQ, Zhang LC. Microstructure evolution and mechanical property response of TC11 titanium alloy under electroshock treatment. Mater Des. 2021;198:109322. https://doi.org/10.1016/j.matdes.2020.109322.

    Article  CAS  Google Scholar 

  36. Xie LC, Guo HJ, Song YL, Liu C, Wang ZQ, Hua L, Wang LQ, Zhang LC. Effects of electroshock treatment on microstructure evolution and texture distribution of near-β titanium alloy manufactured by directed energy deposition. Mater Charact. 2020;161:110137. https://doi.org/10.1016/j.matchar.2020.110137.

    Article  CAS  Google Scholar 

  37. Koyama M, Yamanouchi K, Wang Q, Ri S, Tanaka Y, Hamano Y, Yamasaki S, Mitsuhara M, Ohkubo M, Noguchi H, Tsuzaki K. Multiscale in situ deformation experiments: a sequential process from strain localization to failure in a laminated Ti-6Al-4V alloy. Mater Charact. 2017;128:217. https://doi.org/10.1016/j.matchar.2017.04.010.

    Article  CAS  Google Scholar 

  38. Shao H, Zhao YQ, Ge P, Zeng WD. In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy. Mater Sci Eng, A. 2013;559:515. https://doi.org/10.1016/j.msea.2012.08.134.

    Article  CAS  Google Scholar 

  39. Zhang X, Zhang S, Zhao Q, Zhao Y, Li R, Zeng W. In-situ observations of the tensile deformation and fracture behavior of a fine-grained titanium alloy sheet. J Alloy Compd. 2018;740:660. https://doi.org/10.1016/j.jallcom.2018.01.009.

    Article  CAS  Google Scholar 

  40. Shao H, Zhao Y, Ge P, Zeng W. Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure. Mater Sci Eng A. 2013;586:215. https://doi.org/10.1016/j.jallcom.2018.01.009.

    Article  CAS  Google Scholar 

  41. Boehlert CJ, Cowen CJ, Tamirisakandala S, McEldowney DJ, Miracle DB. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy. Scripta Mater. 2006;55(5):465. https://doi.org/10.1016/j.scriptamat.2006.05.008.

    Article  CAS  Google Scholar 

  42. Feng H, Zhou Y, Jia D, Meng Q, Rao J. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst Growth Des. 2006;6(7):1626. https://doi.org/10.1021/cg050443k.

    Article  CAS  Google Scholar 

  43. Zhang X, Lü W, Zhang D, Wu R, Bian Y, Fang P. In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Mater. 1999;41(1):39. https://doi.org/10.1016/S1359-6462(99)00087-1.

    Article  CAS  Google Scholar 

  44. Kelly A, Tyson aW. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids. 1965;13(6):329. https://doi.org/10.1016/0022-5096(65)90035-9.

  45. Han YF, Kuang W, Yang XF, Li JX, Huang GF, Lv WJ, Zhang D. Effect of La and B addition on the microstructure and mechanical properties of titanium matrix composite. Rare Metal Mater Eng. 2016;45(12):3104. https://doi.org/10.1016/S1875-5372(17)30062-0.

    Article  CAS  Google Scholar 

  46. Li SF, Kondoh K, Imai H, Chen B, Jia L, Umeda J, Fu YB. Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des. 2016;95:127. https://doi.org/10.1016/j.matdes.2016.01.092.

    Article  CAS  Google Scholar 

  47. Caton MJ, John R, Porter WJ, Burba ME. Stress ratio effects on small fatigue crack growth in Ti–6Al–4V. Int J Fatigue. 2012;38:36. https://doi.org/10.1016/j.ijfatigue.2011.11.004.

    Article  CAS  Google Scholar 

  48. Xie LC, Ren SY, Yin F, Wang F, Qian DS, Song YL, Hua L, Wang LQ, Zhang LC, Lu W. Effects of three stress levels on the fatigue properties and fracture mechanisms of an in-situ synthesized TiB/Ti-6Al-4V titanium matrix composite. Mater Char. 2023;195:112511. https://doi.org/10.1016/j.matchar.2022.112511.

    Article  CAS  Google Scholar 

  49. Song X, Wang L, Niinomi M, Nakai M, Liu Y. Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Mater Sci Eng A. 2015;640:154. https://doi.org/10.1016/j.msea.2015.05.078.

    Article  CAS  Google Scholar 

  50. Wang XY, Li SP, Han YF, Huang GF, Mao JW, Lu WJ. Roles of reinforcements in twin nucleation and nano-α precipitation in the hybrid TiB/TiC-reinforced titanium matrix composites during high-temperature fatigue. Scripta Mater. 2021;196:113758. https://doi.org/10.1016/j.scriptamat.2021.113758.

    Article  CAS  Google Scholar 

  51. Zhang CJ, Kong FT, Xiao SL, Zhao ET, Xu LJ, Chen YY. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements. Mater Sci Eng A. 2012;548:152. https://doi.org/10.1016/j.msea.2012.04.004.

    Article  CAS  Google Scholar 

  52. Conrad H. Effects of electric current on solid state phase transformations in metals. Mater Sci Eng A. 2000;287(2):227. https://doi.org/10.1016/S0921-5093(00)00780-2.

    Article  Google Scholar 

  53. Conrad H. Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A. 2002;322(1):100. https://doi.org/10.1016/S0921-5093(01)01122-4.

    Article  Google Scholar 

  54. Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A. 2000;287(2):276. https://doi.org/10.1016/S0921-5093(00)00786-3.

    Article  Google Scholar 

  55. Yu J, Zhang HC, Deng DW, Liu QQ, Hao SZ. Analysis of the relationship of crack arrest effects with fusion zone size by current detour and Joule heating. Int J Adv Manuf Technol. 2016;87(5):1465. https://doi.org/10.1007/s00170-014-5949-6.

    Article  Google Scholar 

  56. Wei SP, Wang G, Deng DW, Rong YM. Microstructure characterization and thermal behavior around crack tip under electropulsing. Appl Phys A. 2015;121(1):69. https://doi.org/10.1007/s00339-015-9383-x.

    Article  CAS  Google Scholar 

  57. Lu WJ, Zhang D, Zhang XN, Wu RJ, Sakata T, Mori H. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique. Mater Sci Eng A. 2001;311(1):142. https://doi.org/10.1016/S0921-5093(01)00910-8.

    Article  Google Scholar 

  58. Wu YY, Wen Y, Guo AA, Zhou J, Yin F, Xie LC, Wang LQ, Hua L, Lu WJ, Zhang LC. Grain boundary and texture evolution of TiB/Ti–2Al–6Sn titanium matrix composite under electroshocking treatment. J Mater Res Tech. 2023;27:4305. https://doi.org/10.1016/j.jmrt.2023.10.177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52271135), the Major Research Plan of the National Natural Science Foundation of China (No. 92266102), the Natural Science Foundation of Hubei Province (No. 2022CFB492), the Knowledge Innovation Program of Wuhan-Basic Research (No. 2022010801010174), the Application Foundation Frontier Project of Wuhan (No. 2020010601012171), “Chu Tian Scholar” Project of Hubei Province (No. CTXZ2017-05), the Overseas Expertise Introduction Project for Discipline Innovation (No. B17034) and the Innovative Research Team Development Program of Ministry of Education of China (No. IRT_17R83).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wen, Le-Chun Xie or Lin Hua.

Ethics declarations

Conflict of interests

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YY., Zhou, J., Han, GL. et al. In-situ SEM characterization of fracture mechanism of TiB/Ti-2Al-6Sn titanium matrix composites after electroshocking treatment. Rare Met. 43, 2805–2818 (2024). https://doi.org/10.1007/s12598-023-02614-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02614-4

Keywords

Navigation