Skip to main content
Log in

Microstructure characterization and thermal behavior around crack tip under electropulsing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electropulsing treatment is a practical method to arrest crack propagation. The microstructure characterization and research on the forming mechanism are difficult due to the small affected area (0.01–1 mm2), high-temperature gradient (102 K/mm) and change rate (104–107 K/s). In this paper, the 1045 steel plate with a preexisting crack subjected to high-voltage pulses was investigated. The surface morphologies and microstructure around the crack tip were observed using optical microscopy and scanning electron microscopy. Experimental results showed that the material around the tip melted, splashed and blunted under electropulsing treatment. The microstructure around the molten hole was divided into four distinct regions. An electro-thermal coupled model considering material ejection, cavity formation, current oscillation and temperature-dependent material properties was proposed to investigate the dynamic formation process of molten hole and gradient microstructure. The uneven temperature distribution, high cooling rate and insufficient carbon diffusion led to the formation of gradient microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.I. Golovin, V.M. Finkel, A.A. Sletkov, Strength Mater. 9, 204 (1977)

    Article  Google Scholar 

  2. A. Amrouche, G. Mesmacque, S. Garcia, A. Talha, Int. J. Fatigue 25, 949 (2003)

    Article  Google Scholar 

  3. T.N. Chakherlou, M. Shakouri, A.B. Aghdam, A. Akbari, Mater. Des. 33, 185 (2012)

    Article  Google Scholar 

  4. Y. Yamashita, T. Kawano, K. Mann, J. Nucl. Sci. Technol. 38, 891 (2001)

    Article  Google Scholar 

  5. A.J. Pinkerton, W. Wang, L. Li, J. Eng. Manuf. 222, 827 (2008)

    Article  Google Scholar 

  6. W. Yanyan, Z. Mingxu, F. Daqing, Fatigue Fract. Eng. Mater. Struct. 16, 363 (1993)

    Article  Google Scholar 

  7. C.S. Shin, C.Q. Cai, Int. J. Fatigue 30, 560 (2008)

    Article  Google Scholar 

  8. J. Yu, H. Zhang, D. Deng, Q. Liu, S. Hao, Int. J. Adv. Manuf. Tech. 1 (2014)

  9. S. Satapathy, F. Stefani, A. Saenz, Electromagn. Launch Tech. 106 (2005)

  10. F. Gallo, S. Satapathy, K. Ravi-Chandar, Electromagn. Launch Tech. 573 (2008)

  11. A. Hosoi, T. Nagahama, Y. Ju, Mater. Sci. Eng. A 533, 38 (2012)

    Article  Google Scholar 

  12. A. Hosoi, T. Yano, Y. Morita, Y. Ju, Fatigue Fract. Eng. Mater. Struct. 37, 1025 (2014)

    Article  Google Scholar 

  13. X.G. Zheng, Y.N. Shi, K. Lu, Mater. Sci. Eng. A 561, 52 (2013)

    Article  Google Scholar 

  14. Y.M. Fu, X.Z. Bai, G.Y. Qiao, Y.D. Hu, J.Y. Luan, Mater. Sci. Technol. 17, 1653 (2001)

    Article  Google Scholar 

  15. G.X. Cai, F.G. Yuan, Int. J. Fract. 96, 279 (1999)

    Article  Google Scholar 

  16. T.J.C. Liu, Eng. Fract. Mech. 78, 666 (2011)

    Article  Google Scholar 

  17. F. Gallo, S. Satapathy, K. Ravi-Chandar, Int. J. Fract. 167, 183 (2011)

    Article  Google Scholar 

  18. S. Hui, Z. Wang, X. He, T. Nonferr, Metal. Soc. 23, 32 (2013)

    Google Scholar 

  19. Y. Zhou, J. Guo, M. Gao, G. He, Mater. Lett. 58, 1732 (2004)

    Article  Google Scholar 

  20. H. Conrad, Mater. Sci. Eng. A 282, 227 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program) (No. 2011CB013404). The authors are grateful to State Key Laboratory of Tribology and Pro. Shengzhi Hao from Dalian University of Technology for facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Wang, G., Deng, D. et al. Microstructure characterization and thermal behavior around crack tip under electropulsing. Appl. Phys. A 121, 69–76 (2015). https://doi.org/10.1007/s00339-015-9383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9383-x

Keywords

Navigation