Skip to main content
Log in

In situ meso-tetra (4-carboxyphenyl) porphyrin ligand substitution in Hf-MOF for enhanced catalytic activity and stability in photoredox reactions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Though there are numerous intrinsic merits of metal-organic frameworks (MOFs), low charge separation efficiency has imposed heavy restrictions on their photocatalytic application. Herein, in situ porphyrin ligand substitution, as a strategy for improving the charge separation efficiency and increasing the amounts of active sites, has been designed and realized in a Hf-biphenyl dicarboxylic acid (BPDC) MOF. Specifically, a size and geometry matched meso-tetra (4-carboxyphenyl) porphyrin (TCPP) ligand was selected and doped into Hf-BPDC MOF by forming coordinating bonds with Hf centers, forming dual-ligand Hf-BPDC-TCPP MOF. The resultant Hf-BPDC-TCPP MOF showed significantly improved activity and chemical stability in the photocatalytic H2 generation (261 μmol·g−1·h−1) and tetracycline (TC) degradation reactions (95.8%), which was 48 and 1.47 folds higher than that of the Hf-BPDC MOF. Photophysical and electrochemical studies revealed that the introduction of porphyrin ligand could generate a stronger internal electric field for boosting the charge separation and transfer, increase the specific surface area for providing more active sites, and narrow the band gap to enhance the visible light absorption. This in situ ligand substitution method provides a promising approach to build a tunable platform for constructing high-performance MOF photocatalysts.

Graphical Abstract

摘要

标题:Meso-四(4-羧基苯基)卟啉配体原位取代提高Hf-MOF在光催化氧化还原反应中活性和稳定性 作者:胡杰、劳红新、许修武、王伟康、王乐乐、刘芹芹 单位:江苏大学材料科学与工程学院,江苏镇江212013 摘要:尽管金属有机骨架(MOFs)具有许多内在优点,但较低的电荷分离效率严重制约了其光催化应用。本文通过配体原位取代策略提高了Hf-联苯二甲酸基MOF材料的电荷分离效率并增加了活性位点。具体而言,选择尺寸和几何形状匹配的中四(4-羧基苯基)卟啉(TCPP)配体,通过与Hf中心形成配位键,将其掺杂到Hf-BPDC-TCPP MOF中,形成双配体Hf-BPDC-TCPP MOF。制备的Hf-BPDC-TCPP MOF在光催化产H2 (261 μmol g-1 h-1)和四环素(TC)降解反应(95.8%)中的性能和化学稳定性显著提高,分别达到单配体Hf-BPDC MOF的48和1.47倍。光物理和电化学测试结果表明,卟啉配体的引入可以产生更强的内部电场,促进电荷的分离和转移,增加比表面积,提供更多的活性位点,窄化带隙,增强可见光吸收。这种原位配体取代方法为构建高性能MOF光催化剂提供了一种有前途的可调平台。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang LL, Hu Y, Xu JH, Huang ZF, Lao HX, Xu XW, Xu J, Tang H, Yuan RS, Wang Z, Liu QQ. Dual non-metal atom doping enabled 2D 1T-MoS2 cocatalyst with abundant edge-S active sites for efficient photocatalytic H2 evolution. Int J Hydrogen Energy. 2023;48(45):16987. https://doi.org/10.1016/j.ijhydene.2023.01.172.

    Article  CAS  Google Scholar 

  2. Wei YC, Zha WY, Wang LL, Ma XF, Zhang SH, Sa RJ, Lin HX, Ding ZX, Long JL, Fu XZ, Yuan RS. In-situ formed surface complexes promoting NIR-light-driven carbonylation of diamine with CO on ultrathin Co2CO3(OH)2 nanosheets. Appl Catal B Environ. 2022;306: 121103. https://doi.org/10.1016/j.apcatb.2022.121103.

    Article  CAS  Google Scholar 

  3. Wang LL, Tang GG, Liu S, Dong HL, Liu QQ, Sun JF, Tang H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;428:131338. https://doi.org/10.1016/j.cej.2021.131338.

    Article  CAS  Google Scholar 

  4. Wang LL, Yang T, Peng LJ, Zhang QQ, She XL, Tang H, Liu QQ. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 mxene S-scheme/schottky heterojunction for boosting photocatalytic H2 evolution. Chinese J Catal. 2022;43(10):2720. https://doi.org/10.1016/s1872-2067(22)64133-0.

    Article  CAS  Google Scholar 

  5. Wang LL, Sa RJ, Wei YC, Ma XF, Lu CG, Huang HW, Fron E, Liu M, Wang W, Huang SP, Hofkens J, Roeffaers MBJ, Wang YJ, Wang JH, Long JL, Fu XZ, Yuan RS. Near-infrared light-driven photoredox catalysis by transition-metal-complex nanodots. Angew Chem Int Ed. 2022;61(39):4561. https://doi.org/10.1002/anie.202204561.

    Article  CAS  Google Scholar 

  6. Su HW, Wang WK, Shi R, Tang H, Sun LJ, Wang LL, Liu QQ, Zhang TR. Recent advances in quantum dot catalysts for hydrogen evolution: synthesis, characterization, and photocatalytic application. Carbon Energy. 2023;2:80. https://doi.org/10.1002/cey2.280.

    Article  CAS  Google Scholar 

  7. Lin WB, Kong XJ, Lin Z, Zhang ZM. Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew Chem Int Ed. 2016;55(22):6411. https://doi.org/10.1002/anie.201600431.

    Article  CAS  Google Scholar 

  8. Chen Y, Yang D, Xin X, Yang ZS, Gao YC, Shi YH, Zhao ZF, An K, Wang WJ, Tan JD, Jiang ZY. Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution. J Mater Chem A. 2022;10(17):9717. https://doi.org/10.1039/d1ta10270b.

    Article  CAS  Google Scholar 

  9. Gao WG, Li XM, Zhang X, Su SD, Luo SJ, Huang R, Jing Y, Luo M. Photocatalytic nitrogen fixation of metal-organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale. 2021;13(16):7801. https://doi.org/10.1039/d1nr00697e.

    Article  CAS  PubMed  Google Scholar 

  10. Zuo Q, Liu TT, Chen CS, Ji Y, Gong XQ, Mai YY, Zhou YF. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Ed. 2019;58(30):10198. https://doi.org/10.1002/anie.201904058.

    Article  CAS  Google Scholar 

  11. Zhang RQ, Song XH, Liu YY, Wang P, Wang ZY, Zheng ZK, Dai Y, Huang BB. Monomolecular VB2-doped MOFs for photocatalytic oxidation with enhanced stability, recyclability and selectivity. J Mater Chem A. 2019;7(47):26934. https://doi.org/10.1039/c9ta09571c.

    Article  CAS  Google Scholar 

  12. Shan CC, Zhang X, Ma SM, Xia XX, Shi YX, Yang J. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloid Surface A. 2022;636:128108. https://doi.org/10.1016/j.colsurfa.2021.128108.

    Article  CAS  Google Scholar 

  13. Fumanal M, Ortega-Guerrero A, Jablonka KM, Smit B, Tavernelli I. Charge separation and charge carrier mobility in photocatalytic metal-organic frameworks. Adv Funct Mater. 2020;30(49):2003792. https://doi.org/10.1002/adfm.202003792.

    Article  CAS  Google Scholar 

  14. Li JR, He T, Zhou J. In situ porphyrin substitution in a Zr (IV)-MOF for stability enhancement and photocatalytic CO2 reduction. Small. 2021;17(22):2005357. https://doi.org/10.1002/smll.202005357.

    Article  CAS  Google Scholar 

  15. Wu XP, Gagliardi L, Truhlar D. Cerium metal-organic framework for photocatalysis. J Am Chem Soc. 2018;140(25):7904. https://doi.org/10.1021/jacs.8b03613.

    Article  CAS  PubMed  Google Scholar 

  16. Firth FCN, Cliffe JM, Vulpe D, Aragones-Anglada M, Moghadam PZ, Fairen-Jimenez D, Slater B, Grey CP. Engineering new defective phases of UiO family metal-organic frameworks with water. J Mater Chem A. 2019;7(13):7459. https://doi.org/10.1039/c8ta10682g.

    Article  CAS  Google Scholar 

  17. Jin P, Wang L, Ma XL, Lian R, Huang JW, She H, Zhang MG, Wang QZ. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl Catal B Environ. 2021;284:119762. https://doi.org/10.1016/j.apcatb.2020.119762.

    Article  CAS  Google Scholar 

  18. Wu K, Zheng J, Huang YL, Luo D, Li YY, Lu W, Li D. Cr2O72 inside Zr/Hf-based metal-organic frameworks: highly sensitive and selective detection and crystallographic evidence. J Mater Chem C. 2020;8(47):16974. https://doi.org/10.1039/d0tc04154h.

    Article  Google Scholar 

  19. Wang X, Zhu L, Lv Z, Qi Z, Xu Y, Miao T, Fu X, Li L. Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials. Chem Eng J. 2022;442:136186. https://doi.org/10.1016/j.cej.2022.136186.

    Article  CAS  Google Scholar 

  20. Yu MT, Jeong SW, Lee HJ, Roh Y. Characteristics of high gate oxide prepared by oxidation of multi-layered Hf/Zr/Hf/Zr/Hf metal films. Thin Solid Films. 2008;516(7):1563. https://doi.org/10.1016/j.tsf.2007.03.076.

    Article  CAS  Google Scholar 

  21. Wang L, Song L, Yang Z, Chang YM, Hu F, Li L, Li L, Chen HY, Peng S. Electronic modulation of metal-organic frameworks by interfacial bridging for efficient pH-universal hydrogen evolution. Adv Funct Mater. 2022;33(1):2210322. https://doi.org/10.1002/adfm.202210322.

    Article  CAS  Google Scholar 

  22. Wang Y, Cui H, Zhang L, Su CY. An acid stable metal-organic framework as an efficient and recyclable catalyst for the O−H insertion reaction of carboxylic acids. ChemCatChem. 2018;10(17):3901. https://doi.org/10.1002/cctc.201800597.

    Article  CAS  Google Scholar 

  23. Xia B, He B, Zhang J, Li L, Zhang Y, Yu J, Ran J, Qiao SZ. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater. 2022;12(46):2201449. https://doi.org/10.1002/aenm.202201449.

    Article  CAS  Google Scholar 

  24. Lu CX, Zhan GP, Chen K, Liu ZK, Wu CD. Anchoring Zn-phthalocyanines in the pore matrices of UiO-67 to improve highly the photocatalytic oxidation efficiency. Appl Catal B Environ. 2020;279:119350. https://doi.org/10.1016/j.apcatb.2020.119350.

    Article  CAS  Google Scholar 

  25. Li RF, Zhang H, Hong MZ. Two Co (ii)/Ni (ii) complexes based on nitrogenous heterocyclic ligands as high-performance electrocatalysts for the hydrogen evolution reaction. Dalton T. 2022;51(10):3970. https://doi.org/10.1039/D1DT03814A.

    Article  CAS  Google Scholar 

  26. Li S, Yan R, Cai M. Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2Mo0.6 S-scheme photocatalyst by carbon dot modification. J Mater Sci Technol. 2023;164(20):59. https://doi.org/10.1016/j.jmst.2023.05.009.

    Article  CAS  Google Scholar 

  27. Li S, Cai M, Liu Y. S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr (VI): intermediate eco-toxicity analysis and mechanistic insights. Chinese J Catal. 2022;43(10):2652. https://doi.org/10.1016/S1872-2067(22)64106-8.

    Article  CAS  Google Scholar 

  28. Hu J, Huang ZF, Wang RY, Xu XW, Wang Z, Tang H, Wang LL, Liu QQ. Boosted charge transfer via coordinate bond construction in porphyrin metal-organic framework/ZnIn2S4 core-shell heterostructures. Inorg Chem. 2023;62(17):6794. https://doi.org/10.1021/acs.inorgchem.3c00534.

    Article  CAS  PubMed  Google Scholar 

  29. Jing JF, Yang J, Zhang ZJ, Zhu YF. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv Energy Mater. 2021;11(29):2101392. https://doi.org/10.1002/aenm.202101392.

    Article  CAS  Google Scholar 

  30. Li BS, Liu SY, Lai C, Zeng G, Zhang M, Zhou M, Huang D, Qin L, Liu XG, Li ZW, An N, Xu F, Yi H, Zhang YJ, Chen L. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial schottky heterojunction for visible-light-driven molecular oxygen activation. Appl Catal B Environ. 2020;266:118650. https://doi.org/10.1021/acs.inorgchem.2c02443.

    Article  CAS  Google Scholar 

  31. Li S, Wang C, Liu Y. S-scheme MIL-101 (Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr (VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem Eng J. 2023;455:140943. https://doi.org/10.1016/j.cej.2022.140943.

    Article  CAS  Google Scholar 

  32. Su HW, Wang WK, Jiang HP, Sun LJ, Kong TT, Lu ZX, Tang H, Wang LL, Liu QQ. Boosting interfacial charge transfer with a giant internal electric field in a TiO2 hollow-sphere-based S-scheme heterojunction for efficient CO2 photoreduction. Inorg Chem. 2022;61(34):13608. https://doi.org/10.1016/j.apcatb.2020.118650.

    Article  CAS  PubMed  Google Scholar 

  33. He XD, Liu QQ, Xu D, Wang LL, Tang H. Plasmonic TiN nanobelts assisted broad spectrum photocatalytic H2 generation. J Mater Sci Technol. 2022;116:1. https://doi.org/10.1016/j.jmst.2021.10.033.

    Article  CAS  Google Scholar 

  34. Dai B, Fang JJ, Yu YR, Sun ML, Huang HG, Lu CH, Kou JH, Zhao YJ, Xu ZZ. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater. 2020;32(12):1906361. https://doi.org/10.1002/adma.201906361.

    Article  CAS  Google Scholar 

  35. Dong C, Yang Y, Hu X. Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%. Nat Commun. 2022;13(1):4982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu W, Wang P, Chen J. Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride. Adv Funct Mater. 2022;32(38):2205119. https://doi.org/10.1002/adfm.202205119.

    Article  CAS  Google Scholar 

  37. Zhang Q, Chen J, Gao X. In-depth insight into the mechanism on photocatalytic synergistic removal of antibiotics and Cr (VI): the decisive effect of antibiotic molecular structure. Appl Catal B-Environ. 2022;313:121443. https://doi.org/10.1016/j.apcatb.2022.121443.

    Article  CAS  Google Scholar 

  38. Cheng YH, Chen J, Che HN. Ultrafast photocatalytic degradation of nitenpyram by 2D ultrathin Bi2WO6: mechanism, pathways and environmental factors. Rare Met. 2022;41(7):2439. https://doi.org/10.1007/s12598-022-01984-5.

    Article  CAS  Google Scholar 

  39. Ma KW, Dong YJ, Zhang MY, Xu CJ, Ding Y. A homogeneous Cu-based polyoxometalate coupled with mesoporous TiO2 for efficient photocatalytic H2 production. J Colloid Interface Sci. 2021;587:613. https://doi.org/10.1016/j.jcis.2020.11.018.

    Article  CAS  PubMed  Google Scholar 

  40. Jin ZL, Wang XP. In situ XPS proved efficient charge transfer and ion adsorption of ZnCo2O4/CoS S-scheme heterojunctions for photocatalytic hydrogen evolution. Mater Today Energy. 2022;30:101164. https://doi.org/10.1016/j.mtener.2022.101164.

    Article  CAS  Google Scholar 

  41. Wang LL, Tang GG, Liu S, Liu QQ, Sun JF, Tang H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;428:131338. https://doi.org/10.1016/j.cej.2021.131338.

    Article  CAS  Google Scholar 

  42. Yu XH, Su HW, Zou JP, Liu QQ, Wang LL, Tang H. Doping-induced metal active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance. Chinese J Catal. 2022;43:421. https://doi.org/10.1016/S1872-2067(21)63849-4.

    Article  CAS  Google Scholar 

  43. Zhu BC, Hong XY, Tang LY, Liu QQ, Tang H. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure. Acta Phys-Chim Sin. 2022;38:2111008. https://doi.org/10.3866/PKU.WHXB202111008.

    Article  CAS  Google Scholar 

  44. Yang T, Deng PK, Wang LL, Hu J, Liu QQ, Tang H. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction. Chinese J Struc Chem. 2022;41:2206023.

    CAS  Google Scholar 

  45. Wang H, Liu X, Yang W, Mao G, Meng Z, Wu Z, Jiang HL. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal-organic frameworks for enhanced catalysis. J Am Chem Soc. 2022;144(48):22008. https://doi.org/10.1021/jacs.2c09136.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Dong H, Sun XJ, Yang DD, Sheng JL, Tang HL, Meng XB, Zhang FM. Step-by-step improving photocatalytic hydrogen evolution activity of NH2-UiO-66 by constructing heterojunction and encapsulating carbon nanodots. Acs Sustain Chem Eng. 2018;6(9):11563. https://doi.org/10.1021/acssuschemeng.8b01740.

    Article  CAS  Google Scholar 

  47. Dong YH, Ma AQ, Li JY, Li HF, Gao YQ. Preparation of defective g-C3N4 nanosheets by thermal exfoliation and its photocatalytic performance. Chine J Rare Met. 2021;45(1):47. https://doi.org/10.13373/j.cnki.cjrm.xy19060009.

    Article  CAS  Google Scholar 

  48. Wan J, Liu L, Wu Y, Song J, Liu J, Song R, Low J, Chen X, Wang J, Fu F, Xiong Y. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. Adv Funct Mater. 2022;32(35):2203252. https://doi.org/10.1002/adfm.202203252.

    Article  CAS  Google Scholar 

  49. Wang SQ, Gu X, Wang X, Zhang XY, Dao XY, Cheng XM, Ma J, Sun WY. Defect-engineering of Zr(IV)-based metal-organic frameworks for regulating CO2 photoreduction. Chem Eng J. 2022;429:132157. https://doi.org/10.1016/j.cej.2021.132157.

    Article  CAS  Google Scholar 

  50. Hamad S, Hernandez NC, Aziz A, Ruiz-Salvador AR, Calero S, Grau-Crespo R. Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis. J Mater Chem A. 2015;3(46):23458. https://doi.org/10.1039/c5ta06982c.

    Article  CAS  Google Scholar 

  51. Jin L, Lv SB, Miao YY, Liu DP, Song FL. Recent development of porous porphyrin-based nanomaterials for photocatalysis. ChemCatChem. 2020;13(1):140. https://doi.org/10.1002/cctc.202001179.

    Article  CAS  Google Scholar 

  52. Shang SS, Xiong W, Yang C, Johannessen B, Liu R, Hsu HY, Gu Q, Leung MKH, Shang J. Atomically dispersed iron metal site in a porphyrin-based metal-organic frameworks for photocatalytic nitrogen fixation. ACS Nano. 2021;15(6):9670. https://doi.org/10.1021/acsnano.0c10947.

    Article  CAS  PubMed  Google Scholar 

  53. Tian A, Shi XG, Tan HC, Li BX, Ma JW, Yang H. Preparation and photocatalytic properties of Ni doped TiO2 nanotube. Chinese J Rare Metals. 2021;45(1):41.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 22102064 and 21972058). Dr. L.W. was supported by the Open Project Program of Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Putian University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Kang Wang, Le-Le Wang or Qin-Qin Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Lao, HX., Xu, XW. et al. In situ meso-tetra (4-carboxyphenyl) porphyrin ligand substitution in Hf-MOF for enhanced catalytic activity and stability in photoredox reactions. Rare Met. 43, 2682–2694 (2024). https://doi.org/10.1007/s12598-023-02595-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02595-4

Keywords

Navigation