Skip to main content
Log in

Application of UiO-66 and its composites for remediation and resource recovery of typical environmental contaminants: a review

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

UiO-66 series metal–organic framework materials (MOFs) are typical porous materials assembled by Zr4+ with a large mass-to-nucleus ratio and terephthalic acid ligands, which form tetrahedral and octahedral cages arranged in a periodic triangular window pattern. Due to the strong interaction between Zr and O, UiO-66 series MOFs exhibit high thermal stability, structural stability, and chemical stability. This article mainly reviews the applications of UiO-66 and its composites in adsorption, photocatalysis, and resource utilization, while exploring the harm of pollutants to human health and the environment. In the first part, the differences in adsorption and removal mechanisms of liquid organic pollutants, heavy metals, and volatile organic compounds (VOCs) are investigated. The results show that organic pollutants are mainly removed by physical adsorption, electrostatic interactions, hydrogen bonding, and π-π interactions, while heavy metals are mainly removed by chemical adsorption, electrostatic interactions, reduction, and chelation. VOCs are mainly removed by the pore volume and pore size structure of the material. Heterojunction catalysis can achieve non-toxic treatment of pollutants, and this study mainly focuses on UiO-based composite materials constructed by strategies such as semiconductor composites, ion doping, and metal/dye encapsulation. In the second part, the synergistic effect between the components of UiO-based composite materials promotes the oriented and rapid separation and transfer of carriers at the material interface, thereby promoting the generation of active species such as h+, ·O2 and ·OH, and achieving rapid degradation of pollutants and detoxification of heavy metals. In the third part, heterojunctions can realize the resource utilization of pollutants in water and air, producing energy-type substances such as hydrogen and methanol while solving environmental problems. In addition, this article also summarizes the harm of common typical pollutants to the environment and human health. Finally, the development prospects and unresolved problems of UiO-66-based materials in water remediation, gas purification, and environmental resource utilization are reviewed.

Graphical abstract

摘要

UiO-66系列MOFs是具有较大质核比的Zr4+离子与同为硬酸的对苯二甲酸配体自组装得到的具有由四面体笼和八面体笼通过三角窗口周期排列典型微孔材料。由于金属节点中的Zr与配体中的O具有较强的相互作用,进而UiO-66系列MOFs具有较高的热稳定性、结构稳定性和化学稳定性。本文主要综述了UiO-66及其复合材料在污染物吸附、光催化及资源化利用方面的应用,同时探究了污染物对人体和环境的危害。第一部分主要探究了液相有机污染物、重金属和气相污染物吸附去除机制的差异,结果表明,液相污染物主要依赖物理吸附、静电、氢键、π-π相互作用吸附去除,重金属主要依赖于化学吸附、静电、还原和螯合作用去除,然而气相污染物主要依赖于材料的孔容和孔径结构去除。异质结催化可实现污染物的无毒害处理,本研究主要关注半导体复合、离子掺杂、金属/染料封装等策略构筑的UiO基复合材料。第二部分,由于UiO基复合材料组分间的协同效应,促使载流子在材料界面定向快速分离和转移,促进h+、·O2-和·OH等活性物种的生成,进而实现污染物的快速降解及重金属的削毒。第三部分,异质结可将水体和大气中的污染物实现资源化,在解决环境问题的同时,产生氢气、甲醇等能源型物质。此外,本文也综述了常见典型污染物对环境和人体的危害。最后,本文综述了UiO-66基材料在水体修复、气体净化及环境资源化方面发展的前景及未解决的问题。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Yue K, Zhang XD, Jiang ST, Chen JF, YangY BFK, Wang YX. Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications. J Mol Liq. 2021;335:116108. https://doi.org/10.1016/j.molliq.2021.116108.

    Article  CAS  Google Scholar 

  2. Yue XC, Ma NL, Sonne C, Guan RR, Lam SS, Le QV, Chen XM, YangYF GuHP, Rinklebe J, Peng WX. Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation. J Hazard Mater. 2021;405:124138. https://doi.org/10.1016/j.jhazmat.2020.124138.

    Article  CAS  PubMed  Google Scholar 

  3. Wang JN, Zhao YH, Peng RF, Wang YM, Zhang JH, Zhu XF, Kang HY, Guo CC, Mao YL, Kim JH, Wang CH. When enzyme meet MOFs: emerging opportunities toward water treatment. Chem Eng J. 2023;466:142993. https://doi.org/10.1016/j.cej.2023.142993.

    Article  CAS  Google Scholar 

  4. Chen ZS, Li Y, Cai YW, Wang SH, Hu BW, Li BF, Ding XD, Zhuang L, Wang XK. Application of covalent organic frameworks and metal-organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Res. 2023;2(1):8. https://doi.org/10.1007/s44246-023-00041-9.

    Article  Google Scholar 

  5. Zhu B, He SS, Yang Y, Li SW, Lau CH, Liu SM, Shao L. Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nat Commun. 2023;14(1):1697. https://doi.org/10.1038/s41467-023-37479-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Usman M, Zeb Z, Ullah H, Suliman MH, Humayun M, Ullah L, Shah SNA, Ahmed U, Saeed M. A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. J Environ Chem Eng. 2022;10(3):107548. https://doi.org/10.1016/j.jece.2022.107548.

    Article  CAS  Google Scholar 

  7. Yang SZ, Li X, Zeng GM, Cheng M, Huang DL, Liu Y, Zhou CY, Xiong WP, Yang Y, Wang WJ, Zhang GX. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coordin Chem Rev. 2021;438:213874. https://doi.org/10.1016/j.ccr.2021.213874.

    Article  CAS  Google Scholar 

  8. Bilal M, Rizwan K, Rahdar A, Badran FM, Iqbal MNH. Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds. Environ Pollut. 2022;309:119805. https://doi.org/10.1016/j.envpol.2022.119805.

    Article  CAS  PubMed  Google Scholar 

  9. Maung TZ, Bishop JE, Holt E, Turner MA, Pfrang C. Indoor air pollution and the health of vulnerable groups: a systematic review focused on particulate matter (pm), volatile organic compounds (VOCs) and their effects on children and people with pre-existing lung disease. Int J Environ Res Public Health. 2022;19(14):8752. https://doi.org/10.3390/ijerph19148752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu XL, Li Y, Chen ZS, Yang H, Cai YW, Wang SH, Chen JR, Hu BW, Huang QF, Shen C, Wang XK. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. Crit Rev Env Sci Tec. 2023;53(13):1289. https://doi.org/10.1080/10643389.2023.2168473.

    Article  CAS  Google Scholar 

  11. Liu D, Gu WY, Zhou L, Wang LZ, Zhang JL, Liu YD, Lei JY. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem Eng J. 2022;427:131503. https://doi.org/10.1016/j.cej.2021.131503.

    Article  CAS  Google Scholar 

  12. Bieniek A, Terzyk AP, Wiśniewski M, Roszek K, Kowalczyk P, Sarkisov L, Keskin S, Kaneko K. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Prog Mater Sci. 2021;117:100743. https://doi.org/10.1016/j.pmatsci.2020.100743.

    Article  CAS  Google Scholar 

  13. Li Y, Huang T, Liu XL, Chen ZS, Yang H, Wang XK. Sorption-catalytic reduction/extraction of hexavalent Cr (VI) and U (VI) by porous frameworks materials. Sep Purif Technol. 2023. https://doi.org/10.1016/j.seppur.2023.123615.

    Article  PubMed  Google Scholar 

  14. Zhang YQ, Yang F, Sun HG, Bai YP, Li SW, Shao L. Building a highly stable ultrathin nanoporous layer assisted by glucose for desalination. Engineering. 2022;16:247. https://doi.org/10.1016/j.eng.2020.06.033.

    Article  CAS  Google Scholar 

  15. He SS, Zhu B, Jiang X, Shao L. Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. P Nati Acad Sci. 2022;119(1):e2114964119. https://doi.org/10.1073/pnas.2114964119.

    Article  CAS  Google Scholar 

  16. Gong YN, Jiao L, Qian YY, Pan CY, Zheng LR, Cai XC, Liu B, Yu SH, Jiang HL. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem. 2020;132(7):2727. https://doi.org/10.1002/ange.201914977.

    Article  Google Scholar 

  17. Guo JL, Liang YH, Liu L, Hu JS, Wang H, An WJ, Cui WQ. Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution. Appl Sur Sci. 2020;522:146356. https://doi.org/10.1016/j.apsusc.2020.146356.

    Article  CAS  Google Scholar 

  18. Zhang X, Wang J, Dong XX, Lv YK. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere. 2020;242:125144. https://doi.org/10.1016/j.chemosphere.2019.125144.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang YF, Liu HX, Gao FX, Tan XL, Cai YW, Hu BW, Huang QF, Fang M, Wang XK. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem. 2022. https://doi.org/10.1016/j.enchem.2022.100078.

    Article  Google Scholar 

  20. Jansson I, Suárez S, Garcia-Garcia FJ, Sánchez B. Zeolite-TiO2 hybrid composites for pollutant degradation in gas phase. Appl Catal B Environ. 2015;178:100. https://doi.org/10.1016/j.apcatb.2014.10.022.

    Article  CAS  Google Scholar 

  21. Gomes Silva C, Luz I, Llabres i Xamena FX, Corma A. García H (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem Eur J. 2010;16(36):11133. https://doi.org/10.1002/chem.200903526.

    Article  CAS  PubMed  Google Scholar 

  22. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun. 2013;49(82):9449. https://doi.org/10.1039/C3CC46105J.

    Article  CAS  Google Scholar 

  23. Vermoortele F, Bueken B, Le BG, Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Speybroeck VV, Kirschhock C, De VDE. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66 (Zr). J Am Chem Soc. 2013;135(31):11465–8. https://doi.org/10.1021/ja405078u.

    Article  CAS  PubMed  Google Scholar 

  24. Garibay SJ, Cohen SM. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun. 2010;46(41):7700. https://doi.org/10.1039/C0CC02990D.

    Article  CAS  Google Scholar 

  25. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc. 2008;130(42):13850. https://doi.org/10.1021/ja8057953.

    Article  CAS  PubMed  Google Scholar 

  26. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater. 2010;22(24):6632. https://doi.org/10.1021/cm102601v.

    Article  CAS  Google Scholar 

  27. Li SX, Sun SL, Wu HZ, Wei CH, Hu Y. Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal Sci Technol. 2018;8(6):1696. https://doi.org/10.1039/C7CY02622F.

    Article  CAS  Google Scholar 

  28. Xu JX, Gao JY, Qi YH, Wang C, Wang L. Anchoring Ni2P on the UiO-66-NH2/g-C3N4-derived C-doped ZrO2/g-C3N4 heterostructure: highly efficient photocatalysts for H2 production from water splitting. ChemCatChem. 2018;10(15):3327. https://doi.org/10.1002/cctc.201800353.

    Article  CAS  Google Scholar 

  29. Wang G, He CT, Huang R, Mao JJ, Wang DS, Li YD. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J Am Chem Soc. 2020;142(45):19339. https://doi.org/10.1021/jacs.0c09599.

    Article  CAS  PubMed  Google Scholar 

  30. Wu JF, Fang XX, Zhu YZ, Ma N, Dai W. Well-designed TiO2@UiO-66-NH2 nanocomposite with superior photocatalytic activity for tetracycline under restricted space. Energ Fuel. 2020;34(10):12911. https://doi.org/10.1021/acs.energyfuels.0c02485.

    Article  CAS  Google Scholar 

  31. Wang SQ, Chen ZS, CaiYW WuXL, Wang SH, Tang ZW, Hu BW, Li Z, Wang XK. Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. Environ Funct Mater. 2023;1:1. https://doi.org/10.1016/j.efmat.2023.03.001.

    Article  Google Scholar 

  32. Ahmadijokani F, Molavi H, Rezakazemi M, Tajahmadi S, Bahi A, Ko F, Aminabhavi TM, Li JR, Arjmand M. UiO-66 metal-organic frameworks in water treatment: a critical review. Prog Mater Sci. 2021. https://doi.org/10.1016/j.pmatsci.2021.100904.

    Article  Google Scholar 

  33. Usman M, Helal A, Abdelnaby MM, Alloush AM, Zeama M, Yamani ZH. Trends and prospects in UiO-66 metal-organic framework for CO2 capture, separation, and conversion. Chem Rec. 2021;21:1771. https://doi.org/10.1002/tcr.202100030.

    Article  CAS  PubMed  Google Scholar 

  34. Winarta J, Shan B, Mcintyre SM, Ye L, Wang C, Liu JC, Mu B. A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst Growth Des. 2019;20(2):1347. https://doi.org/10.1021/acs.cgd.9b00955.

    Article  CAS  Google Scholar 

  35. Zou D, Liu D. Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater Today Chem. 2019;12:139. https://doi.org/10.1016/j.mtchem.2018.12.004.

    Article  CAS  Google Scholar 

  36. Liu QM, Li YY, Chen HF, Lu J, Yu GS, Möslang M, Zhou YB. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater. 2020;382:121040. https://doi.org/10.1016/j.jhazmat.2019.121040.

    Article  CAS  PubMed  Google Scholar 

  37. Vishnu D, Dhandapani B, Kannappan PG, Vo DVN, Ramakrishnan SR. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review. Environ Chem Lett. 2021;19(4):3181. https://doi.org/10.1007/s10311-021-01201-2.

    Article  CAS  Google Scholar 

  38. Ding ML, Cai XC, Jiang HL. Improving MOF stability: approaches and applications. Chem Sc. 2019;10(44):10209. https://doi.org/10.1039/C9SC03916C.

    Article  CAS  Google Scholar 

  39. Ahmadijokani F, Mohammadkhani R, Ahmadipouya S, Shokrgozar A, Rezakazemi M, Molavi H, Aminabhavi TM, Arjmand M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem Eng J. 2020;399:125346. https://doi.org/10.1016/j.cej.2020.125346.

    Article  CAS  Google Scholar 

  40. Embaby MS, Elwany SD, Setyaningsih W, Saber RM. The adsorptive properties of UiO-66 towards organic dyes: a record adsorption capacity for the anionic dye Alizarin Red S. Chinese J Chem Eng. 2018;26(4):731. https://doi.org/10.1016/j.cjche.2017.07.014.

    Article  CAS  Google Scholar 

  41. Dinh HT, Tran NT, Trinh DX. Investigation into the adsorption of methylene blue and methyl orange by UiO-66-NO2 nanoparticles. J Anal Methods Chem. 2021. https://doi.org/10.1155/2021/5512174.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fang X, Wu SB, Wu YH, Yang W, Li YL, He JY, Hong PD, Nie MX, Xie C, Wu ZJ, Zhang KS, Kong LT, Liu JH. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms. Appl Sur Sci. 2020;518:146226. https://doi.org/10.1016/j.apsusc.2020.146226.

    Article  CAS  Google Scholar 

  43. Zhuang ST, Cheng R, Wang JL. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem Eng J. 2019;359:354. https://doi.org/10.1016/j.cej.2018.11.150.

    Article  CAS  Google Scholar 

  44. Liu L, Cui W, Lu C, Zain A, Zhang W, Shen GX, Hu SQ, Qian XY. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. J Environ Manage. 2020;268:110630. https://doi.org/10.1016/j.jenvman.2020.110630.

    Article  CAS  PubMed  Google Scholar 

  45. Wang KN, Wu JJ, Zhu ML, Zheng YZ, Tao X. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal-organic framework composites. J Solid State Chem. 2020;284:121200. https://doi.org/10.1016/j.jssc.2020.121200.

    Article  CAS  Google Scholar 

  46. Li SM, Feng F, Chen S, Zhang XL, Liang YX, Shan SS. Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water. Ecotox Environ Safe. 2020;194:110440. https://doi.org/10.1016/j.ecoenv.2020.110440.

    Article  CAS  Google Scholar 

  47. Yang XY, Liu XL, Liu YF, Wang XF, Chen ZS, Wang XK. Optimizing iodine capture performance by metal-organic framework containing with bipyridine units. Front Chem Sci Eng. 2023;17(4):395. https://doi.org/10.1007/s11705-022-2218-3.

    Article  CAS  Google Scholar 

  48. Yang WX, Cheng MJ, Han Y, Luo XL, Li CH, Tang WZ, Yue TL, Li ZH. Heavy metal ions’ poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb (II) and Cd (II) removal from aqueous and apple juice. J Hazard Mater. 2021;401:123318. https://doi.org/10.1016/j.jhazmat.2020.123318.

    Article  CAS  PubMed  Google Scholar 

  49. Peng D, Liu ZY, Su XY, Xiao YQ, Wang YC, Middletond BA, Lei T. Spatial distribution of heavy metals in the West Dongting Lake floodplain. China Environ Sci-Proc Imp. 2020;22(5):1256. https://doi.org/10.1039/C9EM00536F.

    Article  CAS  Google Scholar 

  50. Wang H, Wang S, Wang SX, Zhang LB, Zhou Y, Yang F. Efficient and selective removal of Cr(VI) by the modified UiO-66-NH2 with phenothiazine-N-rhodanine from aqueous solution: performance and mechanisms. Micropor Mesopor Mat. 2022;336:111834. https://doi.org/10.1016/j.micromeso.2022.111834.

    Article  CAS  Google Scholar 

  51. Tang JL, Chen YB, Zhao MH, Wang SX, Zhang LB. Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions. J Hazard Mater. 2021;413:125278. https://doi.org/10.1016/j.jhazmat.2021.125278.

    Article  CAS  PubMed  Google Scholar 

  52. Liu JM, Cui HH, Li JH, Chen MC. A research on the cadmium ions adsorption of Sulfhydryl-and sulfo-functionalized UIO-66 with silica layer from water. J Environ Chem Eng. 2021;9(1):104621. https://doi.org/10.1016/j.jece.2020.104621.

    Article  CAS  Google Scholar 

  53. Huang LTY, Cao H, Ma JZ, Wang XX. Efficient removal of Pb (II) by UiO-66-NH2: a combined experimental and spectroscopic studies. Environ Nanotechnol Monit Manage. 2022;18:100741. https://doi.org/10.1016/j.enmm.2022.100741.

    Article  CAS  Google Scholar 

  54. Wu Y, Xie YH, Liu XL, Li Y, Wang JY, Chen ZS, Yang H, Hu BW, Shen C, Tang ZW, Huang QF, Wang XK. Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms. Coordin Chem Rev. 2023;483:215097. https://doi.org/10.1016/j.ccr.2023.215097.

    Article  CAS  Google Scholar 

  55. Zhong J, Liu XY, Zhang MJ, Yan X, Hu XW. Research progress of bioremediation technology for uranium contamination. Chin J Rare Met. 2021;45(1):93. https://doi.org/10.13373/j.cnki.cjrm.xy19040039.

    Google Scholar 

  56. Peng RF, Zhang S, Yao YY, Wang JN, Zhu XF, Jiang R, Zhang JH, Zhang W, Wang CH. MOFs meet electrospinning: new opportunities for water treatment. Chem Eng J. 2023;453:139669. https://doi.org/10.1016/j.cej.2022.139669.

    Article  CAS  Google Scholar 

  57. Zhao B, Yuan LY, Wang Y, Duan T, Shi WQ. Carboxylated UiO-66 tailored for U (VI) and Eu (III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Inter. 2021;13(14):16300. https://doi.org/10.1021/acsami.1c00364.

    Article  CAS  Google Scholar 

  58. Li SY, Jin YY, Hu ZQ, Liu Y, Wu SY, Wang Y, Wang GH. Performance and mechanism for U (VI) adsorption in aqueous solutions with amino-modified UiO-66. J Radioanal Nucl Ch. 2021;330:857. https://doi.org/10.1007/s10967-021-07968-6.

    Article  CAS  Google Scholar 

  59. Gumber N, Pai RV, Sanyal K, Dutta B, Hassan PA. Synthesis and uranium adsorption studies of UiO-66 (Ce) based metal organic frameworks from aqueous solutions. Micropor Mesopor Mat. 2022;341:112108. https://doi.org/10.1016/j.micromeso.2022.112108.

    Article  CAS  Google Scholar 

  60. Wen MC, Li GY, Liu HL, Chen JY, An TC, Yamashita H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environ Sci-Nano. 2019;6(4):1006. https://doi.org/10.1039/C8EN01167B.

    Article  CAS  Google Scholar 

  61. Li XQ, Zhang L, Yang ZQ, Wang P, Yan YF, Ran JY. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol. 2020;235:116213. https://doi.org/10.1016/j.seppur.2019.116213.

    Article  CAS  Google Scholar 

  62. Vo TK, Le VN, Yoo KS, Song M, Kim D, Kim J. Facile synthesis of UiO-66 (Zr) using a microwave-assisted continuous tubular reactor and its application for toluene adsorption. Cryst Growth Des. 2019;19(9):4949. https://doi.org/10.1021/acs.cgd.9b00170.

    Article  CAS  Google Scholar 

  63. Vo TK, Nguyen VC, Song M, Kim D, Yoo KS, Park BJ, Kim J. Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66 (Zr) frameworks and their application to toluene adsorption. J Ind Eng Chem. 2020;86:178. https://doi.org/10.1016/j.jiec.2020.03.001.

    Article  CAS  Google Scholar 

  64. Vellingiri K, Kumar P, Deep A, Kim KH. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chem Eng J. 2017;307:1116. https://doi.org/10.1016/j.cej.2016.09.012.

    Article  CAS  Google Scholar 

  65. Hasan Z, Tong M, Jung BK, Ahmed I, Zhong C, Jhung SH. Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion. J Phys Chem C. 2014;118(36):21049. https://doi.org/10.1021/jp507074x.

    Article  CAS  Google Scholar 

  66. Zhou L, Zhang XH, Chen YL. Modulated synthesis of zirconium metal-organic framework UiO-66 with enhanced dichloromethane adsorption capacity. Mater Lett. 2017;197:167. https://doi.org/10.1016/j.matlet.2017.03.162.

    Article  CAS  Google Scholar 

  67. Ou R, Zhu WJ, Li LL, Wang XY, Wang Q, Gao Q, Yuan AH, Pan JM, Yang F. Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Sep Purif Technol. 2021;266:118087. https://doi.org/10.1016/j.seppur.2020.118087.

    Article  CAS  Google Scholar 

  68. Zhang XD, Yang Y, Song L, Chen JF, Yang YQ, Wang YX. Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies. J hazard Mater. 2019;365:597. https://doi.org/10.1016/j.jhazmat.2018.11.049.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang XD, Lv XT, Shi XY, Yang Y, Yang YQ. Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air. J colloid interf Sci. 2019;539:152. https://doi.org/10.1016/j.jcis.2018.12.056.

    Article  CAS  Google Scholar 

  70. Shi XY, Zhang XD, Bi FK, Zheng ZH, Sheng LJ, Xu JC, Wang Z, Yang YQ. Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration. J Mol Liq. 2020;316:113812. https://doi.org/10.1016/j.molliq.2020.113812.

    Article  CAS  Google Scholar 

  71. Zhang XD, Shi XY, Chen JF, Yang Y, Lu G. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene. J Environ Chem Eng. 2019;7(5):103405. https://doi.org/10.1016/j.jece.2019.103405.

    Article  CAS  Google Scholar 

  72. Hu P, Liang XP, Yaseen M, Sun XD, Tong ZF, Zhao ZX, Zhao ZX. Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chem Eng J. 2018;332:608. https://doi.org/10.1016/j.cej.2017.09.115.

    Article  CAS  Google Scholar 

  73. Sun DR, Adiyala PR, Yim SJ, Kim DP. Pore-surface engineering by decorating metal-oxo nodes with phenylsilane to give versatile super-hydrophobic metal-organic frameworks (MOFs). Angew Chem. 2019;131(22):7483. https://doi.org/10.1002/ange.201902961.

    Article  Google Scholar 

  74. Zhang DC, Liu JJ, Wang C, Liu Y, Wang JH, Han X. Application of metal-organic frameworks in the purification of indoor hexanal: experiments and DFT calculations. Build Environ. 2020;182:107095. https://doi.org/10.1016/j.buildenv.2020.107095.

    Article  Google Scholar 

  75. You SZ, Hu Y, Liu XC, Wei CH. Synergetic removal of Pb (II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. Appl Catal B-Environ. 2018;232:288. https://doi.org/10.1016/j.apcatb.2018.03.025.

    Article  CAS  Google Scholar 

  76. Huang QQ, Hu Y, Pei Y, Zhang JH, Fu ML. In situ synthesis of TiO2@NH2-MIL-125 composites for use in combined adsorption and photocatalytic degradation of formaldehyde. Appl Catal B-Environ. 2019;259:118106. https://doi.org/10.1016/j.apcatb.2019.118106.

    Article  CAS  Google Scholar 

  77. Jin JC, Yang M, Zhang YL, Dutta A, Xie CG, Kumar A. Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B. J Taiwan Inst Chem E. 2021;129:410. https://doi.org/10.1016/j.jtice.2021.08.041.

    Article  CAS  Google Scholar 

  78. Mu XX, Jiang JF, Chao FF, Lou YB, Chen JX. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton T. 2018;47(6):1895. https://doi.org/10.1039/C7DT04477A.

    Article  CAS  Google Scholar 

  79. Bibi R, Shen QH, Wei LF, Hao DD, Li NX, Zhou JC. Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation. RSC adv. 2018;8(4):2048. https://doi.org/10.1039/c7ra11500h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang Q, Cui SN, Liu CH, Xu S, Yao C, Li ZY. Construction of CdS@UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability. J colloid interf Sci. 2018;524:379. https://doi.org/10.1016/j.jcis.2018.03.114.

    Article  CAS  Google Scholar 

  81. Abdi J, Yahyanezhad M, Sakhaie S, Vossoughi M, Alemzadeh I. Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation. J Environ Chem Eng. 2019;7(3):103096. https://doi.org/10.1016/j.jece.2019.103096.

    Article  CAS  Google Scholar 

  82. Yang ZQ, Tong XW, Feng JN, He S, Fu ML, Niu XJ, Zhang TP, Liang H, Ding A, Feng XC. Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin removal. Chemosphere. 2019;220:98. https://doi.org/10.1016/j.chemosphere.2018.12.086.

    Article  CAS  PubMed  Google Scholar 

  83. Cao J, Yang ZH, Xiong WP, Zhou YY, Peng YR, Li X, Zhou CY, Xu R, Zhang YR. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chem Eng J. 2018;353:126. https://doi.org/10.1016/j.cej.2018.07.060.

    Article  CAS  Google Scholar 

  84. Zhao C, Li Y, Chu HY, Pan X, Ling L, Wang P, Fu HF, Wang CC, Wang ZH. Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: mechanism insight, pathway analysis and toxicity evaluation. J Hazard Mater. 2021;419:126466. https://doi.org/10.1016/j.jhazmat.2021.126466.

    Article  CAS  PubMed  Google Scholar 

  85. Testa JJ, Grela MA, Litter MI. Heterogeneous photocatalytic reduction of chromium (VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol. 2004;38(5):1589. https://doi.org/10.1021/es0346532.

    Article  CAS  PubMed  Google Scholar 

  86. Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohyd Polym. 2021;251:117000. https://doi.org/10.1016/j.carbpol.2020.117000.

    Article  CAS  Google Scholar 

  87. Li ZW, Wang L, Qin L, Lai C, Wang ZH, Zhou M, Xiao LH, Liu SY, Zhang MM. Recent advances in the application of water-stable metal-organic frameworks: adsorption and photocatalytic reduction of heavy metal in water. Chemosphere. 2021;285:131432. https://doi.org/10.1016/j.chemosphere.2021.131432.

    Article  CAS  PubMed  Google Scholar 

  88. He J, Zhou HL, Peng QM, Wang YT, Chen YJ, Yan ZY, Wang JQ. UiO-66 with confined dyes for adsorption and visible-light photocatalytic reduction of aqueous Cr (VI). Inorg Chem Commun. 2022;140:109441. https://doi.org/10.1016/j.inoche.2022.109441.

    Article  CAS  Google Scholar 

  89. Wei X, Wang CC, Li Y, Wang P, Wei Q. The Z-scheme NH2-UiO-66/PTCDA composite for enhanced photocatalytic Cr (VI) reduction under low-power LED visible light. Chemosphere. 2021;280:130734. https://doi.org/10.1016/j.chemosphere.2021.130734.

    Article  CAS  PubMed  Google Scholar 

  90. Du XD, Yi XH, Wang P, Zheng WW, Deng JG, Wang CC. Robust photocatalytic reduction of Cr (VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chem Eng J. 2019;356:393. https://doi.org/10.1016/j.cej.2018.09.084.

    Article  CAS  Google Scholar 

  91. Li ZF, Zhang ZB, Dong ZM, Yu FT, Ma MY, Wang YC, Wang YQ, Liu YH, Liu J, Cao XH, Liu YH. Solar light-responsive CdS/UiO-66-NH2 for ultrafast uranium reduction from uranium-containing mine wastewater without external sacrificial agents. Sep Purif Technol. 2022;283:120195. https://doi.org/10.1016/j.seppur.2021.120195.

    Article  CAS  Google Scholar 

  92. Dong DP, Yan CX, Huang JD, Lu N, Wu PY, Wang J, Zhang ZY. An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H2 evolution. J Mater Chem A. 2019;7(42):24180. https://doi.org/10.1039/C9TA06141J.

    Article  CAS  Google Scholar 

  93. Yao PZ, Liu HL, Wang DT, Chen JY, Li GY, An TC. Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework. J Colloid Interf Sci. 2018;522:174. https://doi.org/10.1016/j.jcis.2018.03.075.

    Article  CAS  Google Scholar 

  94. Zhang JH, Hu Y, Qin JX, Yang ZX, Fu ML. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem Eng J. 2020;385:123814. https://doi.org/10.1016/j.cej.2019.123814.

    Article  CAS  Google Scholar 

  95. Zhang JH, Guo ZY, Yang ZX, Wang J, Xie J, Fu ML, Hu Y. TiO2@UiO-66 composites with efficient adsorption and photocatalytic oxidation of VOCs: investigation of synergistic effects and reaction mechanism. ChemCatChem. 2021;13(2):581. https://doi.org/10.1002/cctc.202001466.

    Article  CAS  Google Scholar 

  96. Yan X, Liu XY, Zhang MJ, Cui XL, Zhong J, Hu XW. Research progress of biosorption technology for chromium contamination. Chin J Rare Met. 2021;45(2):240. https://doi.org/10.13373/j.cnki.cjrm.xy19060028.

    Google Scholar 

  97. Sin SN, Chua H, Lo W, Ng LM. Assessment of heavy metal cations in sediments of Shing Mun River. Hong Kong Environ Int. 2001;26(5–6):297. https://doi.org/10.1016/S0160-4120(01)00003-4.

    Article  CAS  PubMed  Google Scholar 

  98. Shim J, Lim JM, Shea PJ, Oh BT. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. J hazard Mater. 2014;272:129. https://doi.org/10.1016/j.jhazmat.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  99. Xu JJ, Gu HY, Chen MD, Li XP, Zhao HW, Yang HB. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr (VI) reduction and TC degradation under visible light irradiation. Rare Met. 2022;41(7):2417. https://doi.org/10.1007/s12598-022-01988-1.

    Article  CAS  Google Scholar 

  100. Zeng HJ, Yu ZX, Shao LY, Li XH, Zhu M, Liu YC, Feng XF, Zhu XM. Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr (VI) and dyes based on filtration. Desalination. 2020;491:114558. https://doi.org/10.1016/j.desal.2020.114558.

    Article  CAS  Google Scholar 

  101. Zhou YC, Xu XY, Wang P, Fu HF, Zhao C, Wang CC. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite. Chinese J Catal. 2019;40(12):1912. https://doi.org/10.1016/S1872-2067(19)63433-9.

    Article  Google Scholar 

  102. Zhao C, Zhang Y, Jiang H, Chen J, Liu Y, Liang Q, Zhou M, Li Z, Zhou Y. Combined effects of octahedron NH2-UiO-66 and flowerlike ZnIn2S4 microspheres for photocatalytic dye degradation and hydrogen evolution under visible light. J Phys Chem C. 2019;123(29):18037.

    Article  CAS  Google Scholar 

  103. Cao MT, Yang FL, Zhang Q, Zhang JH, Zhang L, Li LF, Wang XH, Dai WL. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production. J Mater Sci Technol. 2021;76:189. https://doi.org/10.1016/j.jmst.2020.11.028.

    Article  CAS  Google Scholar 

  104. Wei QM, Xiong SX, Li W, Jin C, Chen YS, Hou LL, Wu ZL, Pan ZL, He QY, Wang YZ, Tang DY. Double Z-scheme system of α-SnWO4/UiO-66(NH2)/g-C3N4 ternary heterojunction with enhanced photocatalytic performance for ibuprofen degradation and H2 evolution. J Alloy Comp. 2021;885:160984. https://doi.org/10.1016/j.jallcom.2021.160984.

    Article  CAS  Google Scholar 

  105. Shi JW, Chen F, Hou LL, Li GS, Li YQ, Guan XJ, Liu HP, Guo LJ. Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl Catal B-Environ. 2021;280:119385. https://doi.org/10.1016/j.apcatb.2020.119385.

    Article  CAS  Google Scholar 

  106. Tian P, He X, Zhao L, Li WX, Fang W, Chen H, Zhang FQ, Huang ZH, Wang HL. Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes. Int J Hydrogen Energy. 2019;44(2):788. https://doi.org/10.1016/j.ijhydene.2018.11.016.

    Article  CAS  Google Scholar 

  107. Sun K, Liu M, Pei JZ, Li DD, Ding CM, Wu KF, Jiang HL. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew Chem. 2020;132(50):22937. https://doi.org/10.1002/ange.202011614.

    Article  Google Scholar 

  108. Wang XJ, Yang GR, Chai GD, Nasir MS, Wang SL, Zheng X, Wang CY, Yan W. Fabrication of heterostructured UIO-66-NH2/CNTs with enhanced activity and selectivity over photocatalytic CO2 reduction. Int J Hydrogen Energy. 2020;45(55):30634. https://doi.org/10.1016/j.ijhydene.2020.08.273.

    Article  CAS  Google Scholar 

  109. Zhou AQ, Yang JM, Zhu XW, Zhu XL, Liu JY, Liu JY, Zhong K, Chen HX, Chu JY, Du YS, Song YH, Qiao JC, Li HM, Xu H. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met. 2022;41(6):2118. https://doi.org/10.1007/s12598-022-01960-z.

    Article  CAS  Google Scholar 

  110. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels technological use of CO2. Chem Rev. 2014;114(3):1709.

    Article  CAS  PubMed  Google Scholar 

  111. Wan SP, Ou M, Zhong Q, Wang XM. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for Co2 reduction. Chem Eng J. 2019;358:1287. https://doi.org/10.1016/j.cej.2018.10.120.

    Article  CAS  Google Scholar 

  112. Wang XJ, Yang GR, Chai GD, Nasir MS, Wang SL, Zheng X, Wang CY, Yan W. Fabrication of heterostructured UIO-66-NH2/CNTs with enhanced activity and selectivity over photocatalytic CO2 reduction. Int J Hydrog Energy 2020;45(55):30634–46. https://doi.org/10.1016/j.ijhydene.2020.08.273.

    Article  CAS  Google Scholar 

  113. Zhao XX, Xu MY, Song XH, Zhou WQ, Liu X, Yan Y, Huo PW. Charge separation and transfer activated by covalent bond in UiO-66-NH2/RGO heterostructure for CO2 photoreduction. Chem Eng J. 2022;437:135210. https://doi.org/10.1016/j.cej.2022.135210.

    Article  CAS  Google Scholar 

  114. Hu SC, Deng ZS, Xing MY, Wu SQ, Zhang JL. Highly dispersed cobalt centers on UiO-66-NH2 for photocatalytic CO2 reduction. Catal Lett. 2022. https://doi.org/10.1007/s10562-022-04081-5.

    Article  Google Scholar 

  115. Khoshnava SM, Rostami R, Mohamad ZR, Štreimikienė D, Mardani A, Ismail M. The role of green building materials in reducing environmental and human health impacts. Int J environ Res public health. 2020;17(7):2589. https://doi.org/10.3390/ijerph17072589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Adamová T, Hradecký J, Pánek M. Volatile organic compounds (VOCs) from wood and wood-based panels: methods for evaluation, potential health risks, and mitigation. Polymers. 2020;12(10):2289. https://doi.org/10.3390/polym12102289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liang ZS, Wang JJ, Zhang YN, Han C, Ma ST, Chen JY, Li GY, An TC. Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. J Clean Prod. 2020;253:120019. https://doi.org/10.1016/j.jclepro.2020.120019.

    Article  CAS  Google Scholar 

  118. Li S, Shi WZ, Liu W, Li HM, Zhang W, Hu JR, Ke YC, Sun WL, Ni JR. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci Total Environ. 2018;615:906. https://doi.org/10.1016/j.scitotenv.2017.09.328.

    Article  CAS  PubMed  Google Scholar 

  119. Liang XM, Chen BW, Nie XP, Shi Z, Huang XP, Li XD. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary. South China Chemosphere. 2013;92(11):1410. https://doi.org/10.1016/j.chemosphere.2013.03.044.

    Article  CAS  PubMed  Google Scholar 

  120. Sun Q, Lv M, Hu AY, Yang XY, Yu CP. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen. China J hazard Mater. 2014;277:69. https://doi.org/10.1016/j.jhazmat.2013.11.056.

    Article  CAS  PubMed  Google Scholar 

  121. Verheij C, Rood PPM, Deelstra CK, Levendag MLL, Koch BCP, Polinder S, Schuit SCE, Haagsma JA. Emergency department visits due to intoxications in a Dutch university hospital: occurrence, characteristics and health care costs. PLoS ONE. 2019;14(12):e0226029. https://doi.org/10.1371/journal.pone.0226029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang JF, Sun J, Wang WD, Yang L, Xu YY. Pharmaceuticals in two watersheds in Eastern China and their ecological risks. Environ Pollut. 2021;277:116773. https://doi.org/10.1016/j.envpol.2021.116773.

    Article  CAS  PubMed  Google Scholar 

  123. Duan L, Zhang YZ, Wang B, Zhou YT, Wang F, Sui Q, Xu DJ, Yu G. Seasonal occurrence and source analysis of pharmaceutically active compounds (PhACs) in aquatic environment in a small and medium-sized city. China Sci Total Environ. 2021;769:144272. https://doi.org/10.1016/j.scitotenv.2020.144272.

    Article  CAS  PubMed  Google Scholar 

  124. Liu XH, Lu SY, Meng W, Zheng BH. Residues and health risk assessment of typical antibiotics in aquatic products from the Dongting Lake, China-“Did you eat ‘Antibiotics’ today?” Environ Sci Pollut Res. 2018;25(4):3913. https://doi.org/10.1007/s11356-017-0745-0.

    Article  CAS  Google Scholar 

  125. Ayadi I, Souissi Y, Jlassi I, Peixoto F. Chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: a critical review. J Dev Drugs. 2016;5(151):2. https://doi.org/10.4172/2329-6631.1000151.

    Article  CAS  Google Scholar 

  126. Winpenny J, Heinz I, Koo-Oshima S, Salgot M, Collado J, Hernández F, Torricelli R. The wealth of waste: the economics of wastewater use in agriculture. Water Rep. 2010;35:129.

    Google Scholar 

  127. Muhammad N, Nafees M, Ge L, Haya KM, Bilal M, Chan WP, Lisak G. Assessment of industrial wastewater for potentially toxic elements, human health (dermal) risks, and pollution sources: a case study of Gadoon Amazai industrial estate, Swabi. Pakistan J Hazard Mater. 2021;419:126450. https://doi.org/10.1016/j.jhazmat.2021.126450.

    Article  CAS  PubMed  Google Scholar 

  128. Fiedler N, Laumbach R, Kelly-McNeil K, Lioy P, Fan ZH, Jf Z, Ottenweller J, Ohman-Strickland P, Kipen H. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Persp. 2005;113(11):1542. https://doi.org/10.1289/ehp.8132.

    Article  CAS  Google Scholar 

  129. Herbarth O, Matysik S. Decreasing concentrations of volatile organic compounds (VOC) emitted following home renovations. Indoor Air. 2010;20(2):141. https://doi.org/10.1111/j.1600-0668.2009.00631.x.

    Article  CAS  PubMed  Google Scholar 

  130. García-Pérez J, López-Abente G, Gómez-Barroso D, Morales-Piga A, Romaguera EP, Tamayo I, Fernández-Navarro P, Ramis R. Childhood leukemia and residential proximity to industrial and urban sites. Environ Res. 2015;140:542. https://doi.org/10.1016/j.envres.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  131. Liang B, Yu X, Mi HP, Liu D, Huang QQ, Tian M. Health risk assessment and source apportionment of VOCs inside new vehicle cabins: a case study from Chongqing. China Atmos Pollut Res. 2019;10(5):1677. https://doi.org/10.1016/j.apr.2019.06.008.

    Article  CAS  Google Scholar 

  132. Shuai JF, Kim SS, Ryu H, Park J, Lee CK, Kim GB, Ultra JVU, Yang W. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health. 2018;18(1):1. https://doi.org/10.1186/s12889-018-5454-1.

    Article  CAS  Google Scholar 

  133. Fang L, Norris C, Johnson K, Cui XX, Sun JQ, Teng YB, Tian E, Xu W, Li Z, Mo JH, Schauer JJ, Black M, Bergin M, Zhang J, Zhang YP. Toxic volatile organic compounds in 20 homes in Shanghai: concentrations, inhalation health risks, and the impacts of household air cleaning. Build Environ. 2019;157:309. https://doi.org/10.1016/j.buildenv.2019.04.047.

    Article  Google Scholar 

  134. Kim D, Kang MY, Choi S, Park J, Lee HJ, Kim EA. Reproductive disorders among cosmetologists and hairdressers: a meta-analysis. Int Arch Occ Env Hea. 2016;89(5):739. https://doi.org/10.1007/s00420-016-1112-z.

    Article  Google Scholar 

  135. Eldesouki MA, Sharaf NE, Shakour AAA, Mohamed MS, Hussein AS, Hasani IW. Study of the effect of occupational exposure to volatile organic compounds (VOC’s) on male reproductive hormones. World J Med Sci. 2013;8(1):6. https://doi.org/10.5829/idosi.wjms.2013.8.1.1112.

    Article  CAS  Google Scholar 

  136. Zhang DC, Liu JJ, Jia LZ, Wang P, Han X. Speciation of VOCs in the cooking fumes from five edible oils and their corresponding health risk assessments. Atmos Environ. 2019;211:6. https://doi.org/10.1016/j.atmosenv.2019.04.043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22206080), Zhongyuan Yingcai Jihua (No. ZYYCYU202012183), Henan Key Scientific Research Projects (No. 23B610004), Henan Postdoctoral Foundation (No. 202003027), the Natural Science Youth Fund of Henan Province (Nos. 202300410034 and 232300420336), the Natural Science Foundation of Jiangsu (No. SBK2022041070), the Science and Technology Project of Henan Province (No. 232102321050), the International Science and Technology Cooperation Projects of Henan Province (No. 232102521009), the Young Teacher Foundation of Henan University of Urban Construction (No. YCJQNGGJS202306), China Postdoctoral Science Foundation (No. 2021M701099), the Academic Leader of Henan Institute of Urban Construction (No. YCJXSJSDTR202204), the Science and Technology Major Special of Pingdingshan (No. 2021ZD03), the Key University Scientific Research Project of Henan Province (No. 22A610007) and the Doctoral Research Start-up Project of Henan University of Urban Construction (No. 990/K-Q2022016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Feng Zhu, Chao-Hai Wang or Jin-Hui Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HM., Wang, YL., Zhu, XF. et al. Application of UiO-66 and its composites for remediation and resource recovery of typical environmental contaminants: a review. Rare Met. 43, 2498–2526 (2024). https://doi.org/10.1007/s12598-023-02591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02591-8

Keywords

Navigation