Skip to main content
Log in

Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: current status and perspectives

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recently, metal selenides have obtained widespread attention as electrode materials for alkali (Li+/Na+/K+) batteries due to their promising theoretical capacity and mechanism. Nevertheless, metal selenides, similar to metal oxides and sulfides, also suffer from severe volume explosion during repeated charge/discharge processes, which results in the structure collapse and the following pulverization of electrode materials. Hence, it leads to poor cycle stability and influencing their further application. In order to solve these issues, some special strategies, including elemental doping, coupling with carbon materials, synthesis of the bimetal selenides with heterostructure, etc., have been gradually applied to design novel electrode materials with outstanding electrochemical performance. Herein, the recent research progress on metal selenides as anodes for alkali ion batteries is summarized, including the regulation of crystal structure, synthesis strategies, modification methods, and electrochemical mechanisms and kinetics. Besides, the challenges of metal selenides and the perspective for future electrode material design are proposed. It is hoped to pave a way for the development of metal selenide electrode materials for the potential applications for alkali metal ion (Li+/Na+/K+) batteries.

Graphic abstract

概要

近年来, 金属硒化物作为碱性电池(锂/钠/钾离子电池)电极材料, 因其具有良好的理论容量和作用机理而受到广泛关注.然而, 与金属氧化物和硫化物类似, 金属硒化物在反复充放电过程中也会发生严重的体积膨胀, 导致结构崩塌和粉碎.因 此,导致循环稳定性差, 影响其进一步应用.为了解决这些问题, 一些特殊的策略, 包括元素掺杂, 与碳材料偶联, 合成异质结构双金属硒化物等, 逐渐被应用于设计具有优异电化学性能的新型电极材料. 本文综述了近年来金属硒化物作为碱离子电池负极的研究进展,包括晶体结构调控, 合成策略, 改性方法, 电化学机理和动力学等.此外, 还提出了金属硒化物面临的挑战和未来电极材料设计的展望.希望为开发碱金属离子(Li+/Na+/K+)电池中潜在应用的金属硒化电极材料提供建议.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Reproduced with permission from Ref. [34]. Copyright 2018, American Chemical Society. h Synthesis process and rate-mediated crack reassembly formation mechanism. Reproduced with permission from Ref. [36]. Copyright 2019, Royal Society of Chemistry. i Synthetic procedure of FexSey@CN composites. Reproduced with permission from Ref. [41]. Copyright 2022, Royal Society of Chemistry

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. [64]. Copyright 2018, American Chemical Society. DOS plots of e CoSe2@C and f CoSe2@NC heterostructures; g adsorption energy of CoSe2@C and CoSe2@NC for Na+. Reproduced with permission from Ref. [69]. Copyright 2022, Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [75]. Copyright 2020, Elsevier B.V. h, i TEM images of NiCoSe/NC; j ex situ XRD patterns of NiCoSe@NC electrode during the first charge/discharge process. Reproduced with permission from Ref. [92]. Copyright 2022, Elsevier B.V. k Synthesis; l cycling stability of NSG composite at 1 A·g−1. Reproduced with permission from Ref. [93]. Copyright 2020, Elsevier B.V

Fig. 7
Fig. 8
Fig. 9

Reproduced with permission from Ref. [130]. Copyright 2018. Royal Society of Chemistry. d In-situ XRD patterns; e sodium storage mechanism for NiN-Sb2Se3@C electrode. Reproduced with permission from Ref. [142]. Copyright 2022. Wiley–VCH GmbH

Similar content being viewed by others

References

  1. Xiong J, Liu X, Xia P, Guo X, Lu S, Lei H, Zhang Y, Fan H. Modified separators boost polysulfides adsorption-catalysis in lithium-sulfur batteries from Ni@Co hetero-nanocrystals into CNT-porous carbon dual frameworks. J Colloid Interface Sci. 2023;652:1417. https://doi.org/10.1016/j.jcis.2023.06.159.

    Article  CAS  PubMed  Google Scholar 

  2. Wan PF, Peng XL, Dong SY, Liu XY, Lu SJ, Zhang YF, Fan HS. Synergistic enhancement of chemisorption and catalytic conversion in lithium-sulfur batteries via Co3Fe7/Co5.47N separator mediator. J Colloid Interface Sci. 2024;657:757–66. https://doi.org/10.1016/j.jcis.2023.12.013.

    Article  CAS  PubMed  Google Scholar 

  3. Wan P, Dong S, Xiong J, Jin X, Lu S, Zhang Y, Fan H. Synergistic catalytic conversion and chemisorption of polysulfides from Fe/Fe3C/FeN0.0324 nanocubes modified separator for advanced Li-S batteries. J Colloid Interface Sci. 2023;650:582. https://doi.org/10.1016/j.jcis.2023.07.022.

    Article  CAS  PubMed  Google Scholar 

  4. Sun R, Dong SY, Guo XC, Xia P, Lu SJ, Zhang YF, Fan HS. Construction of 2D sandwich-like Na2V6O16·3H2O@MXene heterostructure for advanced aqueous zinc ion batteries. J Colloid Interface Sci. 2024;655:226. https://doi.org/10.1016/j.jcis.2023.11.020.

    Article  CAS  Google Scholar 

  5. Wu S, Xu F, Li Y, Liu C, Zhang Y, Fan H. Synergistically enhanced sodium ion storage from encapsulating highly dispersed cobalt nanodots into N, P, S tri-doped hexapod carbon framework. J Colloid Interface Sci. 2023;649:741. https://doi.org/10.1016/j.jcis.2023.06.159.

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Zheng J, Tong Y, Wu Y, Liu X, Niu L, Li H. Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J Colloid Interface Sci. 2022;606:1940. https://doi.org/10.1016/j.jcis.2021.09.143.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Yu X, Tong Y, Sun Y, Mai W, Niu L, Li H. Potassium storage in bismuth nanoparticles embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem Eng J. 2022;446:137329. https://doi.org/10.1016/j.cej.2022.137329.

    Article  CAS  Google Scholar 

  8. Wang M, Liu X, Qin B, Li Z, Zhang Y, Yang W, Fan H. In-situ etching and ion exchange induced 2D–2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. Chem Eng J. 2023;451:138508. https://doi.org/10.1016/j.cej.2022.138508.

    Article  CAS  Google Scholar 

  9. Su ZH, Huang JH, Wang RH, Zhang Y, Zeng LX, Zhang YF, Fan HS. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K+ batteries. J Colloid Interface Sci. 2023;639:7. https://doi.org/10.1016/j.jcis.2023.02.012.

    Article  CAS  PubMed  Google Scholar 

  10. Wang MQ, Qin BY, Wu SM, Li YN, Liu CL, Zhang YF, Zeng LX, Fan HS. Interface ion-exchange strategy of MXene@FeIn2S4 hetero-structure for super sodium ion half/full batteries. J Colloid Interface Sci. 2023;650:1457. https://doi.org/10.1016/j.jcis.2023.07.071.

    Article  CAS  PubMed  Google Scholar 

  11. Xiao XH, Song ZR, Deng XL, Deng WT, Hou HS, Zheng RJ, Zou RQ, Ji XB. High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv Funct Mater. 2022;32:2110476. https://doi.org/10.1002/adfm.202110476.

    Article  CAS  Google Scholar 

  12. Wang MQ, Qin BY, Xu F, Yang W, Liu ZT, Zhang YF, Fan HS. Hetero-structural and hetero-interfacial engineering of MXene@Bi2S3/Mo7S8 hybrid for advanced sodium/potassium-ion batteries. J Colloid Interface Sci. 2023;650:446. https://doi.org/10.1016/j.jcis.2023.07.007.

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Peng Z, Sun R, Qin Z, Liu X, Wang C, Fan H, Lu S. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2@NC Nanosheets into cross-stacked architecture. Chin J Chem. 2021;39(9):2599. https://doi.org/10.1002/cjoc.202100192.

    Article  CAS  Google Scholar 

  14. Lin J, Lu S, Zhang Y, Zeng L, Zhang Y, Fan H. Selenide-doped bismuth sulfides (Bi2S3-xSex) and their hierarchical heterostructure with ReS2 for sodium/potassium-ion batteries. J Colloid Interface Sci. 2023;645:654. https://doi.org/10.1016/j.jcis.2023.04.107.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Zhou J, Zheng Y, Chen D. MoSe2-CoSe2/N-doped graphene aerogel nanocomposites with high capacity and excellent stability for lithium-ion batteries. J Power Sour. 2019;439:227112. https://doi.org/10.1016/j.jpowsour.2019.227112.

    Article  CAS  Google Scholar 

  16. Deng Q, Wang M, Liu X, Fan H, Zhang Y, Yang HY. Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries. J Colloid Interface Sci. 2022;626:700. https://doi.org/10.1016/j.jcis.2022.06.073.

    Article  CAS  PubMed  Google Scholar 

  17. Fan H, Yu H, Zhang Y, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du C, Dai Z, Yan Q, Xu J. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 2018;10:48. https://doi.org/10.1016/j.ensm.2017.08.006.

    Article  Google Scholar 

  18. Bai J, Wu H, Wang S, Zhang G, Feng C, Liu H. Synthesis of CoSe2-SnSe2 nanocube-coated nitrogen-doped carbon (NC) as anode for lithium and sodium ion batteries. Appl Surf Sci. 2019;488:512. https://doi.org/10.1016/j.apsusc.2019.05.096.

    Article  CAS  Google Scholar 

  19. Qin BY, Wang MQ, Liu ZT, Yang W, Zhang YF, Fan HS. Heterostructure and doping dual strategies engineering of MoS1.5Se0.5@VS2 nanosheets aggregated nano-roses for super sodium-ion batteries. J Colloid Interface Sci. 2023;646:597–605. https://doi.org/10.1016/j.jcis.2023.05.077.

    Article  CAS  PubMed  Google Scholar 

  20. Zhong D, Chen J, Zhang J, Luo Y, Li Z, Cheng L, Chen Y, Wang G, Wang R. The yolk-shell FeSe@C nanobox with novel synthesis and its high performance for the anode of lithium-ion batteries. Mater Res Express. 2019;6(8):085058. https://doi.org/10.1088/2053-1591/ab1f62.

    Article  CAS  Google Scholar 

  21. Chen Z, Wu R, Wang H, Zhang KHL, Song Y, Wu F, Fang F, Sun D. Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 2018;11(2):966. https://doi.org/10.1007/s12274-017-1709-x.

    Article  CAS  Google Scholar 

  22. Fan HS, Yu H, Zhang YF, Zheng Y, Luo YB, Yan QY. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Edit. 2017;56:12566. https://doi.org/10.1002/anie.201706610.

    Article  CAS  Google Scholar 

  23. Liu X, Tong Y, Wu Y, Zheng J, Sun Y, Niu L, Li H. Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem Eng J. 2022;431:133986. https://doi.org/10.1016/j.cej.2021.133986.

    Article  CAS  Google Scholar 

  24. Qin BY, Wang MQ, Wu SM, Xu F, Li YN, Liu CL, Zhang YF, Fan HS. Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108921.

    Article  Google Scholar 

  25. Liu X, Sun Y, Tong Y, Li H. Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small. 2022;18(44):e2204045. https://doi.org/10.1002/smll.202204045.

    Article  CAS  PubMed  Google Scholar 

  26. Deng Q, Liu X, Li Z, Fan H, Zhang Y, Yang HY. Cobalt-nickel bimetallic sulfide (NiS2/CoS2) based dual-carbon framework for super sodium ion storage. J Colloid Interface Sci. 2023;633:480. https://doi.org/10.1016/j.jcis.2022.11.083.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Liang H, Qin B, Wang M, Zhang Y, Fan H. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci. 2022;625:41. https://doi.org/10.1016/j.jcis.2022.05.155.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Kong F, Chen J, Han Z, Tao S, Qian B, Jiang X. Metal-organic-framework-derived FeSe2@carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries. ChemElectroChem. 2019;6(10):2805. https://doi.org/10.1002/celc.201900590.

    Article  CAS  Google Scholar 

  29. Yoo Y, Hong YJ, Kang YC. Rationally designed microspheres consisting of yolk-shell structured FeSe2-Fe2O3 nanospheres covered with graphitic carbon for lithium-ion batteries. J Mater Chem A. 2018;6(31):15182. https://doi.org/10.1039/c8ta04839h.

    Article  CAS  Google Scholar 

  30. Chen Y, Shao J, Lin X, Gu Y, Holze R, Yun Y, Qu Q, Zheng H. Hollow structured carbon@FeSe nanocomposite as a promising anode material for Li-ion batteries. ChemElectroChem. 2019;6(5):1393. https://doi.org/10.1002/celc.201801722.

    Article  CAS  Google Scholar 

  31. Fan HH, Li HH, Wang ZW, Li WL, Guo JZ, Fan CY, Sun HZ, Wu XL, Zhang JP. Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: synthesis, structure, and DFT studies. ACS Appl Mater Interfaces. 2019;11(51):47886. https://doi.org/10.1021/acsami.9b15765.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang T, Bu F, Liu B, Hao G, Xu Y. Fe7Se8@C core-shell nanoparticles encapsulated within a three-dimensional graphene composite as a high-performance flexible anode for lithium-ion batteries. New J Chem. 2017;41(12):5121. https://doi.org/10.1039/c7nj01166k.

    Article  CAS  Google Scholar 

  33. Lan Y, Zhou J, Xu K, Lu Y, Zhang K, Zhu L, Qian Y. Synchronous synthesis of Kirkendall effect induced hollow FeSe2/C nanospheres as anodes for high performance sodium ion batteries. Chem Commun. 2018;54(45):5704. https://doi.org/10.1039/c8cc02669f.

    Article  CAS  Google Scholar 

  34. Li D, Zhou J, Chen X, Song H. Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl Mater Interfaces. 2018;10(26):22841. https://doi.org/10.1021/acsami.8b06318.

    Article  CAS  PubMed  Google Scholar 

  35. Park SK, Kim JK, Kang YC. Electrochemical properties of uniquely structured Fe2O3 and FeSe2/graphitic-carbon microrods synthesized by applying a metal-organic framework. Chem Eng J. 2018;334:2440. https://doi.org/10.1016/j.cej.2017.12.014.

    Article  CAS  Google Scholar 

  36. Tang Y, Zhao Z, Hao X, Wei Y, Zhang H, Dong Y, Wang Y, Pan X, Hou Y, Wang X, Qiu J. Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J Mater Chem A. 2019;7(9):4469. https://doi.org/10.1039/c8ta10614b.

    Article  CAS  Google Scholar 

  37. Kajita T, Noji T, Imai Y, Kawamata T, Kato M, Koike Y. Electrochemical performance of layered FeSe for sodium ion batteries using ether-based solvents. J Electrochem Soc. 2018;165(14):A3582. https://doi.org/10.1149/2.1381814jes.

    Article  CAS  Google Scholar 

  38. Zhang DM, Jia JH, Yang CC, Jiang Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater. 2020;24:439. https://doi.org/10.1016/j.cej.2020.124590.

    Article  CAS  Google Scholar 

  39. Wan M, Zeng R, Chen KY, Liu GX, Chen WL, Wang LL, Zhang N, Xue LH, Zhang WX, Huang YH. Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Mater. 2018;10:114. https://doi.org/10.1016/j.ensm.2017.08.013.

    Article  Google Scholar 

  40. Tian W, Ma W, Feng Z, Tian F, Li H, Liu J, Xiong S. Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties. J Energy Chem. 2020;44:97. https://doi.org/10.1016/j.jechem.2019.08.021.

    Article  Google Scholar 

  41. Zhai L, Yu JM, Yu JP, Xiong WW, Zhang Q. Thermodynamic transformation of crystalline organic hybrid iron selenide to FexSey@CN microrods for sodium ion storage. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.2c15688.

    Article  PubMed  Google Scholar 

  42. Liu YZ, Yang CH, Li YP, Zheng FH, Li YJ, Deng Q, Zhong WT, Wang G, Liu TZ. FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem Eng J. 2020;393:8. https://doi.org/10.1016/j.cej.2020.124590.

    Article  CAS  Google Scholar 

  43. Wang J, Wang B, Liu X, Bai J, Wang H, Wang G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem Eng J. 2020;382:123050. https://doi.org/10.1016/j.cej.2019.123050.

    Article  CAS  Google Scholar 

  44. Kong Z, Wang L, Iqbal S, Zhang B, Wang B, Dou J, Wang F, Qian Y, Zhang M, Xu L. Iron selenide-based heterojunction construction and defect engineering for fast potassium/sodium-ion storage. Small. 2022;18(15):e2107252. https://doi.org/10.1002/smll.202107252.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan JJ, Liu W, Zhang XK, Zhang YH, Yang WT, Lai WD, Li XK, Zhang JJ, Li XF. MOF derived ZnSe-FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. J Power Sour. 2020;455:227937. https://doi.org/10.1016/j.jpowsour.2020.227937.

    Article  CAS  Google Scholar 

  46. Yu N, Zou L, Li C, Guo K. In-situ growth of binder-free hierarchical carbon coated CoSe2 as a high performance lithium ion battery anode. Appl Surf Sci. 2019;483:85. https://doi.org/10.1016/j.apsusc.2019.03.258.

    Article  CAS  Google Scholar 

  47. Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. CoSe nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci. 2018;5(12):1800763. https://doi.org/10.1002/advs.201800763.

    Article  CAS  Google Scholar 

  48. Meng T, Hao Y-N, Qin J, Cao M. Interface-engineering-induced electric field effect and atomic disorder in cobalt selenide for high-rate and large-capacity lithium storage. ACS Sustain Chem Eng. 2019;7(5):4657. https://doi.org/10.1021/acssuschemeng.8b04026.

    Article  CAS  Google Scholar 

  49. Wang C, Zhang B, Ou X, Xia H, Cao L, Ming L, Zhang J. Co0.85Se@N-doped reduced graphene oxide hybrid polyhedron-in-polyhedron structure assembled from metal-organic framework with enhanced performance for Li-ion storage. J Colloid Inter Sci. 2020;573:223. https://doi.org/10.1016/j.jcis.2020.04.007.

    Article  CAS  Google Scholar 

  50. Zhou K, Han Y, Tang D, Wu H, Wu X, Diao G, Li H, Chen M. Hierarchical N-doped HMCN/CNT hybrid carbon frameworks assembling cobalt selenide nanoparticles for advanced properties of lithium/sodium storage. Adv Mater Interfaces. 2020;7(2):1901699. https://doi.org/10.1002/admi.201901699.

    Article  CAS  Google Scholar 

  51. Zhou J, Wang Y, Zhang J, Chen T, Song H, Yang HY. Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale. 2016;8(32):14992. https://doi.org/10.1039/c6nr03571j.

    Article  CAS  PubMed  Google Scholar 

  52. Wang G, Yue H, Xu Y, Liu G, Jin R, Gao S. Diethylenetriamine directed the assembly of Co0.85Se nanosheets layer by layer on N-doped carbon nanosheets for high performance lithium ion batteries. J Colloid Inter Sci. 2020;570:332. https://doi.org/10.1016/j.jcis.2020.03.009.

    Article  CAS  Google Scholar 

  53. Zhang X, Zhou J, Zheng Y, Chen D. Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(8):9236. https://doi.org/10.1021/acsami.9b20866.

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Liang J, Wang C, Ma J. Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. J Energy Chem. 2019;33:160. https://doi.org/10.1016/j.jechem.2018.09.006.

    Article  Google Scholar 

  55. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. C Eng J. 2021;425:130657. https://doi.org/10.1016/j.cej.2021.130657.

    Article  CAS  Google Scholar 

  56. Liu X, Xu F, Li Z, Liu Z, Yang W, Zhang Y, Fan H, Yang HY. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev. 2022;464:214544. https://doi.org/10.1016/j.ccr.2022.214544.

    Article  CAS  Google Scholar 

  57. Zhou Y, Tian R, Duan H, Wang K, Guo Y, Li H, Liu H. CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries. J Power Sour. 2018;399:223. https://doi.org/10.1016/j.jpowsour.2018.07.110.

    Article  CAS  Google Scholar 

  58. Zeng K, Tang W, Li C, Chen Y, Zhao S, Liu Q, Xie Y. Systematic optimization of the substituents on the phenothiazine donor of doubly strapped porphyrin sensitizers: an efficiency over 11% unassisted by any cosensitizer or coadsorbent. J Mater Chem A. 2019;7(36):20854. https://doi.org/10.1039/c9ta06911a.

    Article  CAS  Google Scholar 

  59. Wang M, Guo H, An C, Zhang Y, Li W, Zhang Z, Liu G, Liu Y, Wang Y. In-situ carbon coated CoSe microrods as a high-capacity anode for sodium ion batteries. J Alloy Comp. 2020;820:153090. https://doi.org/10.1016/j.jallcom.2019.153090.

    Article  CAS  Google Scholar 

  60. Jia M, Jin Y, Zhao C, Zhao P, Jia M. High electrochemical sodium storage performance of ZnSe/CoSe@N-doped porous carbon synthesized by the in-situselenization of ZIF-8/67 polyhedron. Appl Surf Sci. 2020;518:146259. https://doi.org/10.1016/j.apsusc.2020.146259.

    Article  CAS  Google Scholar 

  61. Cui C, Wei Z, Zhou G, Wei W, Ma J, Chen L, Li C. Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. J Mater Chem A. 2018;6(16):7088. https://doi.org/10.1039/c8ta01168k.

    Article  CAS  Google Scholar 

  62. Li B, Liu Y, Jin X, Jiao S, Wang G, Peng B, Zeng S, Shi L, Li J, Zhang G. Designed formation of hybrid nanobox composed of carbon sheathed CoSe2 anchored on nitrogen-doped carbon skeleton as ultrastable anode for sodium-ion batteries. Small. 2019;15(42):1902881. https://doi.org/10.1002/smll.201902881.

    Article  CAS  Google Scholar 

  63. Park SK, Kim JK, Kang YC. Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem Eng J. 2017;328:546. https://doi.org/10.1016/j.cej.2017.07.079.

    Article  CAS  Google Scholar 

  64. Park S-K, Kang YC. MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl Mater Interfaces. 2018;10(20):17203. https://doi.org/10.1021/acsami.8b03607.

    Article  CAS  PubMed  Google Scholar 

  65. Yang SH, Park S-K, Kang YC. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem Eng J. 2019;370:1008. https://doi.org/10.1016/j.cej.2019.03.263.

    Article  CAS  Google Scholar 

  66. Ge P, Hou H, Li S, Huang L, Ji X. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl Mater Interfaces. 2018;10(17):14716. https://doi.org/10.1021/acsami.8b01888.

    Article  CAS  PubMed  Google Scholar 

  67. Yin H, Qu H-Q, Liu Z, Jiang R-Z, Li C, Zhu M-Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy. 2019;58:715. https://doi.org/10.1016/j.nanoen.2019.01.062.

    Article  CAS  Google Scholar 

  68. Xiao Y, Zhang J, Su D, Zhang A, Jin Q, Zhou L, Wu S, Wang X, Chen W, Fang S. In-situ growth of V-shaped CoSe2 nanorods on graphene with C-Co bonding for high-rate and long-life sodium-ion batteries. J Alloy Compd. 2020;819:153359. https://doi.org/10.1016/j.jallcom.2019.153359.

    Article  CAS  Google Scholar 

  69. Sui YY, Guo J. Chen XY, Guan JP, Chen XH, Wei HX, Liu Q, Wei B, Geng HB. Highly dispersive CoSe2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries. Inorg Chem Front. 2022;9:5217. https://doi.org/10.1039/d2qi01453j.

    Article  CAS  Google Scholar 

  70. Tian J, Li J, Zhang Y, Yu XY, Hong Z. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J Mater Chem A. 2019;7(37):21404. https://doi.org/10.1039/c9ta06273d.

    Article  CAS  Google Scholar 

  71. Huang J, Li X, Jiang S, Liu C, Lu M, Yang Y. Boosted sodium storage performance by iron doping in hybrid spheres of cobalt selenide/carbon composite anode. J Electron Mate. 2022;51(12):6626. https://doi.org/10.1007/s11664-022-09909-9.

    Article  CAS  Google Scholar 

  72. Zeeshan Ali MTA, Ali M. Binary metal selenide nanowires wrapped over carbon fibers for a binder-free anode of sodium-ion batteries. J Alloy Comp. 2022;924:166571. https://doi.org/10.1016/j.jallcom.2022.166571.

    Article  CAS  Google Scholar 

  73. Liu Y, Wang X. Reduced graphene oxides decorated nise nanoparticles as high performance electrodes for Na/Li storage. Materials. 2019;12(22):3709. https://doi.org/10.3390/ma12223709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu X, Li S, Li J, Ali RN, Naz H, Liu P, Feng C, Xiang B. Free-standing WTe2QD-doped NiSe/C nanowires for highly reversible lithium storage. Electrochim Acta. 2019;295:22. https://doi.org/10.1016/j.electacta.2018.10.128.

    Article  CAS  Google Scholar 

  75. Gao T-P, Wong KW, Ng KM. Impacts of morphology and N-doped carbon encapsulation on electrochemical properties of NiSe for lithium storage. Energy Storage Mater. 2020;25:210. https://doi.org/10.1016/j.ensm.2019.10.013.

    Article  Google Scholar 

  76. Wang L, Wang Z, Xie L, Zhu L, Cao X. An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X=O, S, Se). Electrochim Acta. 2020;343:136138. https://doi.org/10.1016/j.electacta.2020.136138.

    Article  CAS  Google Scholar 

  77. Zhao C, Shen Z, Tu F, Hu Z. Template directed hydrothermal synthesis of flowerlike NiSex/C composites as lithium/sodium ion battery anodes. J Mater Sci. 2020;55(8):3495. https://doi.org/10.1007/s10853-019-04200-5.

    Article  CAS  Google Scholar 

  78. Xiao X, Ni L, Chen G, Ai G, Li J, Qiu T, Liu X. Two-dimensional NiSe2 nanosheets on carbon fiber cloth for high-performance lithium-ion batteries. J Alloy Comp. 2020;821:153218. https://doi.org/10.1016/j.jallcom.2019.153218.

    Article  CAS  Google Scholar 

  79. Fan H, Yu H, Wu X, Zhang Y, Luo Z, Wang H, Guo Y, Madhavi S, Yan Q. Controllable preparation of square Nickel Chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. Acs Appl Mater Inter. 2016;8(38):25261. https://doi.org/10.1021/acsami.6b07300.

    Article  CAS  Google Scholar 

  80. Shang J, Dong H, Geng H, Cao B, Liu H, Liu Q, Cao X, Zheng J, Gu H. Electronic modulation of nickel selenide by copper doping and in situ carbon coating towards high-rate and high-energy density lithium ion half/full batteries. Nanoscale. 2020;12(46):23645. https://doi.org/10.1039/d0nr06614a.

    Article  CAS  PubMed  Google Scholar 

  81. Liu J, Xie J, Dong H, Wei H, Sun C, Yang J, Geng H. Iron doping of NiSe2 nanosheets to accelerate reaction kinetics in sodium-ion half/full batteries. Sci China Mater. 2022;66(1):69. https://doi.org/10.1007/s40843-022-2139-3.

    Article  CAS  Google Scholar 

  82. Yang S, He M, Deng X, Feng Y, Huang X, Wu K, Bai C, Ke J, Xiong D. Wafer-like FeSe2-NiSe2/C nanosheets as efficient anode for high- performances lithium batteries. Chem Phys Lett. 2020;746:137274. https://doi.org/10.1016/j.cplett.2020.137274.

    Article  CAS  Google Scholar 

  83. Zhang Z, Shi X, Yang X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta. 2016;208:238. https://doi.org/10.1016/j.electacta.2016.04.183.

    Article  CAS  Google Scholar 

  84. Su C, Ru Q, Cheng S, Gao Y, Chen F, Zhao L, Ling FC-C. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage. Compos Part B-Eng. 2019;179:107538. https://doi.org/10.1016/j.compositesb.2019.107538.

    Article  CAS  Google Scholar 

  85. Shi X, Fang L, Peng H, Deng X, Sun Z. Metal-organic framework-derived NiSe embedded into a porous multi-heteroatom self-doped carbon matrix as a promising anode for sodium-ion battery. Nanomaterials (Basel). 2022;12(19):3345. https://doi.org/10.3390/nano12193345.

    Article  CAS  PubMed  Google Scholar 

  86. Cho JS, Lee SY, Kang YC. First introduction of NiSe2 to anode material for sodium-ion batteries: a hybrid of graphene-wrapped NiSe2/C porous nanofiber. Sci Rep. 2016;6:23338. https://doi.org/10.1038/srep23338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu S, Li D, Zhang G, Sun D, Zhou J, Song H. Two-dimensional NiSe2/N-rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. ACS Appl Mater Interfaces. 2018;10(40):34193. https://doi.org/10.1021/acsami.8b10635.

    Article  CAS  PubMed  Google Scholar 

  88. Fan S, Li G, Yang G, Guo X, Niu X. NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries. New J Chem. 2019;43(32):12858. https://doi.org/10.1039/c9nj02631b.

    Article  CAS  Google Scholar 

  89. Ou X, Li J, Zheng F, Wu P, Pan Q, Xiong X, Yang C, Liu M. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J Power Sour. 2017;343:483. https://doi.org/10.1016/j.jpowsour.2017.01.097.

    Article  CAS  Google Scholar 

  90. Zhu S, Li Q, Wei Q, Sun R, Liu X, An Q, Mai L. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl Mater Interfaces. 2017;9(1):311. https://doi.org/10.1021/acsami.6b10143.

    Article  CAS  PubMed  Google Scholar 

  91. Yang X, Zhang J, Wang Z, Wang H, Zhi C, Yu DYW, Rogach AL. Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small. 2018;14(7):1702669. https://doi.org/10.1002/smll.201702669.

    Article  CAS  Google Scholar 

  92. Qian ZB, Wang XJ, Liu T, Zhang LY, Yu JG. Nickel-cobalt selenide@N-doped carbon towards high-performance anode materials for sodium-ion batteries. J Energy Stor. 2022;52:104522. https://doi.org/10.1016/j.est.2022.104522.

    Article  Google Scholar 

  93. Chu J, Yu Q, Han K, Xing L, Bao Y, Wang W. A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon. 2020;161:834. https://doi.org/10.1016/j.carbon.2020.02.020.

    Article  CAS  Google Scholar 

  94. Lee YY, Park GO, Choi YS, Shon JK, Yoon J, Kim KH, Yoon WS, Kim H, Kim JM. Mesoporous transition metal dichalcogenide ME2 (M = Mo, W; E = S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries. Rsc Adv. 2016;6(17):14253. https://doi.org/10.1039/c5ra19799f.

    Article  CAS  Google Scholar 

  95. Wu L, Tan P, Liu Y, Shang Y, Liu W, Xiong X, Pan J. In situ formation of carbon encapsulated nanosheet-assembled MoSe2 hollow nanospheres with boosting lithium storage. J Colloid Inter Sci. 2017;491:279. https://doi.org/10.1016/j.jcis.2016.12.020.

    Article  CAS  Google Scholar 

  96. Kim H, Quoc Hai N, Kim IT, Hur J. Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries. Appl Surf Sci. 2019;481:1196. https://doi.org/10.1016/j.apsusc.2019.03.165.

    Article  CAS  Google Scholar 

  97. Ma L, Zhou X, Xu L, Xu X, Zhang L, Chen W. Ultrathin few-layered molybdenum selenide/graphene hybrid with superior electrochemical Li-storage performance. J Power Sour. 2015;285:274. https://doi.org/10.1016/j.jpowsour.2015.03.120.

    Article  CAS  Google Scholar 

  98. Yao J, Liu B, Ozden S, Wu J, Yang S, Rodrigues M-TF, Kalaga K, Dong P, Xiao P, Zhang Y, Vajtai R, Ajayan PM. 3D nanostructured molybdenum Diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim Acta. 2015;176:103. https://doi.org/10.1016/j.electacta.2015.06.138.

    Article  CAS  Google Scholar 

  99. Zhao C, Song H, Zhuang Q, Ma Q, Liang J, Peng H, Mao C, Zhang Z, Li G. Self-polymerized hollow Mo-dopamine complex-induced functional MoSe2/N-doped carbon electrodes with enhanced lithium/sodium storage properties. Inorg Chem Front. 2018;5(5):1026. https://doi.org/10.1039/c8qi00101d.

    Article  CAS  Google Scholar 

  100. Xia H, Li K, Zhang J. Interfacial engineering of Ag nanodots/MoSe2 nanoflakes/Cu(OH)2 hybrid-electrode for lithium-ion battery. J Colloid Inte Sci. 2019;557:635. https://doi.org/10.1016/j.jcis.2019.09.067.

    Article  CAS  Google Scholar 

  101. Gao J, Li Y, Shi L, Li J, Zhang G. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl Mater Interfaces. 2018;10(24):20635. https://doi.org/10.1021/acsami.8b06442.

    Article  CAS  PubMed  Google Scholar 

  102. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. ACS Appl Mater. 1979;126(12):2047. https://doi.org/10.1149/1.2128859.

    Article  CAS  Google Scholar 

  103. Mei L, Xu J, Wei Z, Liu H, Li Y, Ma J, Dou S. Chevrel phase Mo6T8 (T = S, Se) as electrodes for advanced energy storage. Small. 2017;13(34):1701441. https://doi.org/10.1002/smll.201701441.

    Article  CAS  Google Scholar 

  104. Wang H, Lan X, Jiang D, Zhang Y, Zhong H, Zhang Z, Jiang Y. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J Power Sour. 2015;283:187. https://doi.org/10.1016/j.jpowsour.2015.02.096.

    Article  CAS  Google Scholar 

  105. Ko YN, Choi SH, Park SB, Kang YC. Hierarchical MoSe2 yolk-shell microspheres with superior Na-ion storage properties. Nanoscale. 2014;6(18):10511. https://doi.org/10.1039/c4nr02538e.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang Y, Liu Z, Zhao H, Du Y. MoSe2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. Rsc Adv. 2016;6(2):1440. https://doi.org/10.1039/c5ra24852c.

    Article  CAS  Google Scholar 

  107. Choi SH, Kang YC. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage. Nanoscale. 2016;8(7):4209. https://doi.org/10.1039/c5nr07733h.

    Article  CAS  PubMed  Google Scholar 

  108. Liu Z, Zhang Y, Zhao H, Li N, Du Y. Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Sci China Mater. 2017;60(2):167. https://doi.org/10.1007/s40843-016-5133-2.

    Article  CAS  Google Scholar 

  109. Xie D, Tang W, Wang Y, Xia X, Zhong Y, Zhou D, Wang D, Wang X, Tu J. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2016;9(6):1618. https://doi.org/10.1007/s12274-016-1056-3.

    Article  CAS  Google Scholar 

  110. Li B, Liu Y, Li Y, Jiao S, Zeng S, Shi L, Zhang G. Dual-functional template-directed synthesis of MoSe2/carbon hybrid nanotubes with highly disordered layer structures as efficient alkali-ion storage anodes beyond lithium. ACS Appl Mater Interfaces. 2020;12(2):2390. https://doi.org/10.1021/acsami.9b17473.

    Article  CAS  PubMed  Google Scholar 

  111. Chen J, Pan A, Wang Y, Cao X, Zhang W, Kong X, Su Q, Lin J, Cao G, Liang S. Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 2019;21:97. https://doi.org/10.1016/j.ensm.2018.10.019.

    Article  Google Scholar 

  112. Xu D, Chen L, Su XZ, Jiang HL, Lian C, Liu HL, Chen L, Hu YJ, Jiang H, Li CZ. Heterogeneous MoSe2/nitrogen-doped-carbon nanoarrays: engineering atomic interface for potassium-ion storage. Adv Funct Mater. 2022;32:2110223. https://doi.org/10.1002/adfm.202110223.

    Article  CAS  Google Scholar 

  113. Lu S, Zhu T, Wu H, Wang Y, Li J, Abdelkaderkh A, Xi K, Wang W, Li Y, Ding S, Gao G, Kumarh RV. Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy. 2019;59:762. https://doi.org/10.1016/j.nanoen.2019.03.008.

    Article  CAS  Google Scholar 

  114. Tang C, Wei X, Cai X, An Q, Hu P, Sheng J, Zhu J, Chou S, Wu L, Mai L. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(23):19626. https://doi.org/10.1021/acsami.8b02819.

    Article  CAS  PubMed  Google Scholar 

  115. Li Y, Wu F, Xiong S. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage. Electrochim Acta. 2019;296:582. https://doi.org/10.1016/j.electacta.2018.11.059.

    Article  CAS  Google Scholar 

  116. Wang Z, Liu S, Hou Q, Zhang L, Zhang A, Li F, Zhang X, Wu P, Zhu X, Wei S, Zhou Y. Confining ultrafine ZnSe nanoparticles in N, Se-codoped carbon matrix using a direct solid state reaction approach for boosting sodium storage performance. J Alloy Comp. 2020;840:155703. https://doi.org/10.1016/j.jallcom.2020.155703.

    Article  CAS  Google Scholar 

  117. Liu X, Liu Y, Feng M, Fan L-Z. MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage. J Mater Chem A. 2018;6(46):23621. https://doi.org/10.1039/c8ta09247h.

    Article  CAS  Google Scholar 

  118. Fang G, Wang Q, Zhou J, Lei Y, Chen Z, Wang Z, Pan A, Liang S. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano. 2019;13(5):5635. https://doi.org/10.1021/acsnano.9b00816.

    Article  CAS  PubMed  Google Scholar 

  119. Jeong SY, Cho JS. Porous hybrid nanofibers comprising ZnSe/CoSe2/carbon with uniformly distributed pores as anodes for high-performance sodium-ion batteries. Nanomaterials. 2019;9(10):1362. https://doi.org/10.3390/nano9101362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv Energy Mater. 2020;10:2000741. https://doi.org/10.1002/aenm.202000741.

    Article  CAS  Google Scholar 

  121. Chu J, Wang W, Yu Q, Lao C-Y, Zhang L, Xi K, Han K, Xing L, Song L, Wang M, Bao Y. Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. J Mater Chem A. 2020;8(2):779. https://doi.org/10.1039/c9ta10088a.

    Article  CAS  Google Scholar 

  122. Hu Y, Lu T, Zhang Y, Sun Y, Liu J, Wei D, Ju Z, Zhuang Q. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Charact. 2019;36(10):1900199. https://doi.org/10.1002/ppsc.201900199.

    Article  CAS  Google Scholar 

  123. Zhou Z, Zhang W, Zhao W, Yang Z, Zeng C. A replacement etching route to CuSe with a hierarchical hollow structure for enhanced performance in lithium ion batteries. J Electron Mater. 2014;43(2):359. https://doi.org/10.1007/s11664-013-2905-4.

    Article  CAS  Google Scholar 

  124. Jin R, Meng M, Zhang S, Yang L, Li G. CNTs@C@Cu2-xSe hybrid materials: an advanced electrode for high performance lithium batteries and supercapacitors. Energy Technolo-Ger. 2018;6(11):2179. https://doi.org/10.1002/ente.201800236.

    Article  CAS  Google Scholar 

  125. Lin H, Li M, Yang X, Yu D, Zeng Y, Wang C, Chen G, Du F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv Energy Mater. 2019;9(20):1900323. https://doi.org/10.1002/aenm.201900323.

    Article  CAS  Google Scholar 

  126. Tang H, Lu X, Zhu H, Tian Y, Khatoon R, Zhu Z, Zeng Y-J, Zhang Q, Lu J. Hydrothermally synthesized MnSe as high cycle stability anode material for lithium-ion battery. Ionics. 2020;26(1):43. https://doi.org/10.1007/s11581-019-03180-5.

    Article  CAS  Google Scholar 

  127. Feng J, Li Q, Wang H, Zhang M, Yang X, Yuan R, Chai Y. Hexagonal prism structured MnSe stabilized by nitrogen-doped carbon for high performance lithium ion batteries. J Alloy Comp. 2019. https://doi.org/10.1016/j.jallcom.2019.03.081.

    Article  Google Scholar 

  128. Li Z, Liu H, Huang J, Zhang L. MOF-derived alpha-MnSe/C composites as anode materials for Li-ion batteries. Ceram Int. 2019;45(17):23765. https://doi.org/10.1016/j.ceramint.2019.08.093.

    Article  CAS  Google Scholar 

  129. Zhou P, Chen L, Zhang M, Huang Q, Cui C, Li X, Wang L, Li L, Yang C, Li Y. Embedding alpha-MnSe nanodots in nitrogen-doped electrospinning carbon nanofibers to enhanced storage properties of lithium-ion batteries. J Alloy Comp. 2019;797:826. https://doi.org/10.1016/j.jallcom.2019.05.107.

    Article  CAS  Google Scholar 

  130. Liu DH, Li WH, Liang HJ, Lue HY, Guo JZ, Wang J, Wu XL. Coaxial alpha-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. J Mater Chem A. 2018;6(32):15797. https://doi.org/10.1039/c8ta03967d.

    Article  CAS  Google Scholar 

  131. Zheng J, Li X, He C, Zhou C, Zhang H, Tang B, Rui Y. Preparation and electrochemical performance of CoSe2-MnSe2 for application in lithium-ion batteries. ChemElectroChem. 2020;7(3):782. https://doi.org/10.1002/celc.201901845.

    Article  CAS  Google Scholar 

  132. Hu L, He L, Wang X, Shang C, Zhou G. MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology. 2020;31(33):335402. https://doi.org/10.1088/1361-6528/ab8e78.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou X, Li T, Cui Y, Meyerson ML, Weeks JA, Mullins CB, Jin Y, Liu Y, Zhu L. In Situ and operando morphology study of germanium-selenium alloy anode for lithium-ion batteries. ACS Appl Energy Mater. 2020;3(7):6115. https://doi.org/10.1021/acsaem.0c01148.

    Article  CAS  Google Scholar 

  134. Wei Y, Huang L, He J, Guo Y, Qin R, Li H, Zhai T. Healable structure triggered by thermal/electrochemical force in layered GeSe2 for high performance Li-ion batteries. Adv Energy Mater. 2018;8(18):1703635. https://doi.org/10.1002/aenm.201703635.

    Article  CAS  Google Scholar 

  135. Wang K, Liu M, Huang D, Li L, Feng K, Zhao L, Li J, Jiang F. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries. J Colloid Inter Sci. 2020;571:387. https://doi.org/10.1016/j.jcis.2020.03.026.

    Article  CAS  Google Scholar 

  136. Zhou Y, Zhao M, Chen ZW, Shi XM, Jiang Q. Potential application of 2D monolayer -GeSe as an anode material in Na/K ion batteries. Phys Chem Chem Phys. 2018;20(48):30290. https://doi.org/10.1039/c8cp05484c.

    Article  CAS  PubMed  Google Scholar 

  137. Jiang Q, Wang J, Jiang Y, Li L, Cao X, Cao M. Selenium vacancy-rich and carbon-free VSe2 nanosheets for high-performance lithium storage. Nanoscale. 2020;12(16):8858. https://doi.org/10.1039/d0nr00801j.

    Article  CAS  PubMed  Google Scholar 

  138. Ming F, Liang H, Lei Y, Zhang W, Alshareef HN. Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy. 2018;53:11. https://doi.org/10.1016/j.nanoen.2018.08.035.

    Article  CAS  Google Scholar 

  139. Han G, Chen Z-G, Ye D, Yang L, Wang L, Drennan J, Zou J. In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J Mater Chem A. 2014;2(19):7109. https://doi.org/10.1039/c4ta00045e.

    Article  CAS  Google Scholar 

  140. Patel M, Haroon H, Kumar A, Ahmad J, Bhat GA, Lone S, Putthusseri D, Majid K, Wahid M. High Na+ mobility in rGO wrapped high aspect ratio 1D SbSe nano structure renders better electrochemical Na+ battery performance. ChemPhysChem. 2020;21(8):814. https://doi.org/10.1002/cphc.201901011.

    Article  CAS  PubMed  Google Scholar 

  141. Lan D, Li Q. Sn4P3/SbSn nanocomposites for anode application in sodium-ion batteries. ChemElectroChem. 2018;5(17):2383. https://doi.org/10.1002/celc.201800639.

    Article  CAS  Google Scholar 

  142. Qinghua Li WZ, Peng J, Yu DD, Liang ZX. Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202112776.

    Article  Google Scholar 

  143. Chen R, Li S, Liu J, Li Y, Ma F, Liang J, Chen X, Miao Z, Han J, Wang T, Li Q. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim Acta. 2018;282:973. https://doi.org/10.1016/j.electacta.2018.07.035.

    Article  CAS  Google Scholar 

  144. Shusheng Tao ZL, Momen R, Zou KY, Wang BW, Deng XL, Xiao XH, Deng WT, Liu YC, Hou HS, Zou GQ, Ji XB. Suppressing the voltage failure by twinned heterostructure for high power sodium-ion capacitor. Chem Eng J. 2022;446:137070. https://doi.org/10.1016/j.cej.2022.137070.

    Article  CAS  Google Scholar 

  145. Muhammad Aizaz Ud, Din SI, Jamil S, UllahDar S. Graphene-like ultrathin bismuth selenide nanosheets as highly stable anode material for sodium-ion battery. J Alloy Comp. 2022;901:163572. https://doi.org/10.1016/j.jallcom.2021.163572.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51563002 and 52101243), the “100-level” Innovative Talents Project of Guizhou Province, China (No. [2016] 5653), the Natural Science Foundation of Guangdong Province (No. 2020A1515010886), and the Science and Technology Planning Project of Guangzhou (No. 202102010373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Jun Lu, Yu-Fei Zhang or Hao-Sen Fan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Xu, F., Wang, CH. et al. Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: current status and perspectives. Rare Met. 43, 1906–1931 (2024). https://doi.org/10.1007/s12598-023-02563-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02563-y

Keywords

Navigation