Skip to main content
Log in

Electrolyte effect on electrochemical behaviors of manganese fluoride material for aqueous asymmetric and symmetric supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Exploring wide voltage window materials is not only an available measure to enhance the energy density of hybrid supercapacitor (HSCs), but also avoids the dynamic mismatch caused by different energy storage mechanisms of two electrodes in assembled symmetrical HSC. However, there are few reports about the wide potential window materials except Bi2O3 and VO2. Therefore, the MnF2 synthesized by solvothermal reaction was served as the electrode for HSC. The MnF2 exhibited electrochemical activity in alkaline solution in three-electrode system, especially with a wide potential window from −0.8 to + 0.5 V in 2 mol·L−1 NaOH. Furthermore, the assembled MnF2//MnF2 symmetrical HSC had a potential window of 1.5 V, and it exhibited outstanding long-cycle capability. Meanwhile, when MnF2 was taken as the negative and positive respectively, the potential windows of asymmetric devices CoMoO4//MnF2 and MnF2//Activated Carbon (AC) could reach 1.3 and 1.45 V, respectively, showing excellent cycle stability. This work shows that MnF2 material has great research value in HSC, and provides a new research direction for developing high-performance devices.

Graphic abstract

概要

具有宽电位窗口材料的开发不仅是提高混合超级电容器能量密度的有效措施, 而且能够避免由于两极储能机制的不同导致在组装混合超级电容器时电化学动力过程不匹配问题. 然而, 除Bi2O3 和VO2 外, 关于具有宽电位窗口的材料报道很少. 因此, 本研究工作通过溶剂热反应合成的MnF2 可以作为混合超级电容器的电极材料. 在三电极体系测试中, MnF2 在碱性溶液中具有电化学活性, 特别是在2 mol·L-1 NaOH溶液中具有 −0.8 - +0.5 V的宽电位窗口. 此外, 组装的MnF2//MnF2 对称混合超级电容器具有1.5 V 的电位窗口, 并且其表现出优异的长循环能力. 同时, 当MnF2 分别作为负极和正极时, 非对称器件CoMoO4//MnF2 和MnF2//AC 的电位窗口分别可达1.3 和1.45 V, 表现出优异的循环稳定性. 这一工作表明MnF2 材料在混合超级电容器领域具有很大的研究价值, 为开发高性能器件提供了一个新的研究方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ren XH, Wang HY, Chen J, Xu WL, He QQ, Wang HY, Zhan FY, Chen SW, Chen LY. Emerging 2D copper-based materials for energy storage and conversion: a review and perspective. Small. 2023;19(8):2204121. https://doi.org/10.1002/smll.202204121.

    Article  CAS  Google Scholar 

  2. Wang HY, Ren XH, Chen J, Xu WL, He QQ, Wang HY, Zhan FY, Chen LY. Recent advances of emerging oxyhydroxide for electrochemical energy storage applications. J Power Sour. 2023;554(15):232309. https://doi.org/10.1016/j.jpowsour.2022.232309.

    Article  CAS  Google Scholar 

  3. Wei H, Yang HY, Zhang XQ, Zhu JF, Qiu PP, Luo W. Hydrogen peroxide enabled two-dimensional molybdenum trioxide nanosheet clusters for enhanced surface Li-ion storage. Tungsten. 2021;3(3):338. https://doi.org/10.1007/s42864-021-00093-7.

    Article  Google Scholar 

  4. Chen JY, Zhou YP, Guo F, Tang ZH, Zhao SF. Lead-free Nb-based dielectric film capacitors for energy storage applications. Tungsten. 2022;4(4):296. https://doi.org/10.1007/s42864-022-00179-w.

    Article  Google Scholar 

  5. Jiang ZA, Wang YJ, Chen XF, Luo SR, Wu FX. Research progresses of iron-based fluoride materials for lithium battery cathodes. Chin J Rare Met. 2022;46(6):724. https://doi.org/10.13373/j.cnki.cjrm.XY21100029.

    Article  Google Scholar 

  6. Li Y, Huang B, Zhao X, Luo ZY, Liang SF, Qin HZ, Chen LY. Zeolitic imidazolate framework-L-assisted synthesis of inorganic and organic anion-intercalated hetero-trimetallic layered double hydroxide sheets as advanced electrode materials for aqueous asymmetric super-capacitor battery. J Power Sourc. 2022;527(15):231149. https://doi.org/10.1016/j.jpowsour.2022.231149.

    Article  CAS  Google Scholar 

  7. Yu L, Guan BY, Xiao W, Lou XW. Formation of Yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater. 2015;5(21):1500981. https://doi.org/10.1002/aenm.201500981.

    Article  CAS  Google Scholar 

  8. Hu H, Guan BY, Lou XW. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem. 2016;1(1):102. https://doi.org/10.1016/j.chempr.2016.06.001.

    Article  CAS  Google Scholar 

  9. Liu DJ, Ma JQ, Gao LF, Cai J, Yu C, Xie J. High-Performance Si/C Anode Material Constructed with 2D Chitin Nanosheets. Chin J Rare Met. 2022;46(9):1125. https://doi.org/10.13373/j.cnki.cjrm.XY21030001.

    Article  Google Scholar 

  10. Zhan FY, Wang HY, He QQ, Xu WL, Chen J, Ren XH, Wang HY, Liu SD, Han MS, Yamauchi Y, Chen LY. Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci. 2022;13(41):11981. https://doi.org/10.1039/D2SC04012C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang YT, Li J, Jiang ZM, Shi MJ, Sheng R, Liu Z, Zhang S, Cao YL, Wei T, Fan ZJ. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon. 2021;175(30):281. https://doi.org/10.1016/j.carbon.2021.01.016.

    Article  CAS  Google Scholar 

  12. Gu XQ, Chen ZM, Li Y, Wu J, Wang X, Huang H, Liu Y, Dong B, Shao MW, Kang ZH. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl Mater Interfaces. 2021;13(21):24814. https://doi.org/10.1021/acsami.1c04386.

    Article  CAS  PubMed  Google Scholar 

  13. Kandasamy M, Sahoo S, Nayak SK, Chakraborty B, Rout CS. Recent advances in engineered metal oxide nanostructures for supercapacitor applications: experimental and theoretical aspects. J Mater Chem A. 2021;9(33):17643. https://doi.org/10.1039/D1TA03857E.

    Article  CAS  Google Scholar 

  14. Zhou J, Hu HY, Li HQ, Chen ZP, Yuan CZ, He XJ. Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors. Rare Met. 2023;42:719. https://doi.org/10.1007/s12598-022-02154-3.

    Article  CAS  Google Scholar 

  15. Sun XT, Wan Y, Wang B, Xu Q, Teng XL, Liu HY, Wang YJ, Guo SW, Wu CH, Hu H, Wu MB. Laser irradiation of graphite foils as robust current collectors for high-mass loaded electrodes of supercapacitors. Rare Met. 2022;41(12):4138. https://doi.org/10.1007/s12598-022-02090-2.

    Article  CAS  Google Scholar 

  16. Cai Z, Ma YF, Wang M, Qian AN, Tong ZM, Xiao LT, Jia ST, Chen XY. Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances. Rare Met. 2022;41(6):2084. https://doi.org/10.1007/s12598-021-01935-6.

    Article  CAS  Google Scholar 

  17. Wan LM, Xia QY, Wu JH, Liu J, Shi ZY, Lan S, Zhai T, Savilov SV, Aldoshin SM, Xia H. Stabilizing charge storage of Fe2O3-based electrode via phosphate ion functionalization for long cycling life. Rare Met. 2023;42:39. https://doi.org/10.1007/s12598-022-02114-x.

    Article  CAS  Google Scholar 

  18. Qin P, Zhang SQ, Yung KKL, Huang ZF, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447. https://doi.org/10.1007/s12598-021-01722-3.

    Article  CAS  Google Scholar 

  19. Zheng SS, Li Q, Xue HG, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2019;7(2):305. https://doi.org/10.1093/nsr/nwz137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou HJ, Zhu GY, Dong SY, Liu P, Lu YY, Zhou Z, Cao S, Zhang YZ, Pang H. Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv Mater. 2023. https://doi.org/10.1002/adma.202211523.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qi JQ, Zhang CC, Liu H, Zhu L, Sui YW, Feng XJ, Wei WQ, Zhang H, Cao P. MXene-wrapped ZnCo2S4 core-shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors. Rare Met. 2022;41(8):2633. https://doi.org/10.1007/s12598-021-01956-1.

    Article  CAS  Google Scholar 

  22. Mahadik S, Surendran S, Kim JY, Janani G, Lee DK, Kim TH, Kim JK, Sim U. Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor applications. J Mater Chem A. 2022;10(28):14655. https://doi.org/10.1039/D2TA02584A.

    Article  CAS  Google Scholar 

  23. Hu M, Cui C, Shi C, Wu ZS, Yang JX, Cheng RF, Guang TJ, Wang HL, Lu HX, Wang XH. High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano. 2019;13(6):6899. https://doi.org/10.1021/acsnano.9b01762.

    Article  CAS  PubMed  Google Scholar 

  24. Liu CL, Bai Y, Li WT, Yang FY, Zhang GX, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Edit. 2022;61(11): e202116282. https://doi.org/10.1002/anie.202116282.

    Article  CAS  ADS  Google Scholar 

  25. Bai Y, Liu CL, Chen TT, Li WT, Zheng SS, Pi YC, Luo YS, Pang H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Edit. 2021;60(48):25318. https://doi.org/10.1002/anie.202112381.

    Article  CAS  Google Scholar 

  26. Jing QL, Li WT, Wang JJ, Chen XD, Pang H. Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorg Chem Front. 2021;8(18):6899. https://doi.org/10.1021/acsnano.9b01762.

    Article  CAS  Google Scholar 

  27. Lal MS, Badam R, Matsumi N, Ramaprabhu S. Hydrothermal synthesis of single-walled carbon nanotubes/TiO2 for quasi-solid-state composite-type symmetric hybrid supercapacitors. J Energy Stor. 2021;40: 102794. https://doi.org/10.1016/j.est.2021.102794.

    Article  Google Scholar 

  28. Raj BGS, Kim HY, Kim BS. Ultrasound assisted formation of Mn2SnO4 nanocube as electrodes for high performance symmetrical hybrid supercapacitors. Electrochim Acta. 2018;278(10):93. https://doi.org/10.1016/j.electacta.2018.05.021.

    Article  CAS  Google Scholar 

  29. Zhao N, Deng LB, Luo DW, Zhang PX. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl Surf Sci. 2020;526(1): 146696. https://doi.org/10.1016/j.apsusc.2020.146696.

    Article  CAS  Google Scholar 

  30. Potphode D, Sharma CS. Pseudocapacitance induced candle soot derived carbon for high energy density electrochemical supercapacitors: non-aqueous approach. J Energy Stor. 2020;27: 101114. https://doi.org/10.1016/j.est.2019.101114.

    Article  Google Scholar 

  31. Ouyang YH, Xing T, Chen YL, Zheng LP, Peng J, Wu C, Chang BB, Luo ZG, Wang XY. Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor. J Energy Stor. 2020;30: 101454. https://doi.org/10.1016/j.est.2020.101454.

    Article  Google Scholar 

  32. Song ZY, Wu JH, Li GD, Wang XB, Zhu TT, Geng CL, Liu N, Fan LQ, Lin JM. Basic magnesium-doped nickel-based electrodes with card-on-lawn structure for supercapacitor with high energy density. Electroanal Chem. 2020;863(15): 114040. https://doi.org/10.1016/j.jelechem.2020.114040.

    Article  CAS  Google Scholar 

  33. Bouketaya S, Elferjani A, Abdelbaky MSM, Dammak M, Garcia-Granda S. Crystal structure, phase transitions, dielectric and vibrational studies and photoluminescence properties of a new iron fluoride based on bipyridine. J Solid State Chem. 2019;277:395. https://doi.org/10.1016/j.jssc.2019.06.036.

    Article  CAS  ADS  Google Scholar 

  34. Nénert G, Palstra TTM. Prediction for new magnetoelectric fluorides. J Phys-Condens Mat. 2007;19(40):406213. https://doi.org/10.1088/0953-8984/19/40/406213.

    Article  CAS  Google Scholar 

  35. Chen GH, Zhou XZ, Bai Y, Yuan YF, Li Y, Chen MZ, Ma L, Tan GQ, Hu JP, Wang ZH, Wu F, Wu C, Lu J. Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed. Nano Energy. 2019;56:884. https://doi.org/10.1016/j.nanoen.2018.11.080.

    Article  CAS  Google Scholar 

  36. Ji PX, Yu RH, Wang PY, Pan XL, Jin HH, Zheng DY, Chen D, Zhu JW, Pu ZH, Wu JS, Mu SC. Ultra-fast and in-depth reconstruction of transition metal fluorides in electrocatalytic hydrogen evolution processes. Adv Sci. 2022;9(3):2103567. https://doi.org/10.1002/advs.202103567.

    Article  CAS  Google Scholar 

  37. Sivaprakash P, Kumar KA, Muthukumaran S, Pandurangan A, Dixit A, Arumugam S. NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor. Electroanal Chem. 2020;873(15):114379. https://doi.org/10.1016/j.jelechem.2020.114379.

    Article  CAS  Google Scholar 

  38. Jin M, Zhang GG, Yu F, Li WF, Lu W, Huang HT. Sponge-like Ni(OH)2–NiF2 composite film with excellent electrochemical performance. Phys Chem Chem Phys. 2013;15(5):1601. https://doi.org/10.1039/C2CP43357E.

    Article  CAS  PubMed  Google Scholar 

  39. Sivaprakash P, Ashok KK, Subalakshmi K, Bathula C, Sandhu S, Arumugam S. Fabrication of high performance asymmetric supercapacitors with high energy and power density based on binary metal fluoride. Mater Lett. 2020;275(15): 128146. https://doi.org/10.1016/j.matlet.2020.128146.

    Article  CAS  Google Scholar 

  40. Yongfa H, Xudong Li, Rui D, Danfeng Y, Tong Y, Yuxi H, Caini T, Xiujuan S, Ping G, Enhui L. Tetragonal MF2 (M=Ni, Co) micro/nanocrystals anodes for lithium/sodium-ion capacitors. Electrochim Acta. 2020;329(1): 135138. https://doi.org/10.1016/j.electacta.2019.135138.

    Article  CAS  Google Scholar 

  41. Wei YY, Ma XH, Huang XT, Zhao BC, Zhu XB, Liang CH, Zi ZF, Dai JM. Solvothermal synthesis of porous MnF2 hollow spheroids as anode materials for Sodium-/Lithium-Ion batteries. ChemElectroChem. 2019;6(10):2726. https://doi.org/10.1002/celc.201900147.

    Article  CAS  Google Scholar 

  42. Remith P, Kalaiselvi N. Designed construction, validation of carbon-free porous MnO spheres with hybrid architecture as anodes for lithium-ion batteries. Phys Chem Chem Phys. 2016;18(23):15854. https://doi.org/10.1039/C6CP01984F.

    Article  CAS  PubMed  Google Scholar 

  43. Li XX, Lu J, Peng GC, Jin LP, Wei S. Solvothermal synthesis of MnF2 nanocrystals and the first-principle study of its electronic structure. J Phys Chem Solids. 2009;70(3):609. https://doi.org/10.1016/j.jpcs.2009.01.004.

    Article  CAS  ADS  Google Scholar 

  44. Rui K, Wen ZY, Lu Y, Shen C, Jin J. Anchoring nanostructured manganese fluoride on few-layer graphene nanosheets as anode for enhanced lithium storage. ACS Appl Mater Interfaces. 2016;8(3):1819. https://doi.org/10.1021/acsami.5b09718.

    Article  CAS  PubMed  Google Scholar 

  45. Mi YM, He GP, Liu ZC, Yang F, Wang WX, Huang PC, Xu YQ. Effect of electrolyte concentration on electrochemical performance of ZnWO4 nanosheets array. Energy Technol Ger. 2022;10(12):2200974. https://doi.org/10.1002/ente.202200974.

    Article  CAS  Google Scholar 

  46. Krishnan P, Biju V. Effect of electrolyte concentration on the electrochemical performance of RGO–KOH supercapacitor. B Mater Sci. 2021;44(4):288. https://doi.org/10.1007/s12034-021-02576-2.

    Article  CAS  Google Scholar 

  47. Ma MY, Zhao H, Li Y, Zhang YX, Bai JL, Mu XM, Zhou JY, He YM, Xie EQ. Synthesis of high-performance TiN based battery-type wire supercapacitors and their energy storage mechanisms. Electrochim Acta. 2020;334(20): 135543. https://doi.org/10.1016/j.electacta.2019.135543.

    Article  CAS  Google Scholar 

  48. Qi FL, Xia ZX, Sun RL, Sun XJ, Xu XL, Wei W, Wang SL, Sun GQ. Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors. J Mater Chem A. 2018;6(29):14170. https://doi.org/10.1039/C8TA01186A.

    Article  CAS  Google Scholar 

  49. Jiao YC, Hafez AM, Cao DX, Mukhopadhyay A, Ma Y, Zhu HL. Metallic MoS2 for high performance energy storage and energy conversion. Small. 2018;14(36):1800640. https://doi.org/10.1002/smll.201800640.

    Article  CAS  Google Scholar 

  50. Zhou XJ, Cao SF, Li HZ, Guo HB, Chen YG. Wide voltage-window biomass carbon-based MnO electrodes for supercapacitors. J Nanopart Res. 2021;23(4):110. https://doi.org/10.1007/s11051-021-05210-8.

    Article  CAS  Google Scholar 

  51. Zhang QN, Levi MD, Dou QY, Lu YL, Chai YG, Lei SL, Ji HX, Liu B, Bu XD, Ma PJ, Yan XB. The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes. Adv Energy Mater. 2019;9(3):1802707. https://doi.org/10.1002/aenm.201802707.

    Article  CAS  Google Scholar 

  52. Messaoudi B, Joiret S, Keddam M, Takenouti H. Anodic behaviour of manganese in alkaline medium. Electrochim Acta. 2001;46(16):2487. https://doi.org/10.1016/S0013-4686(01)00449-2.

    Article  CAS  Google Scholar 

  53. Ma RG, Zhou Y, Yao L, Liu GH, Zhou ZZ, Lee JM, Wang JC, Liu Q. Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route. J Power Sour. 2016;303(30):49. https://doi.org/10.1016/j.jpowsour.2015.10.102.

    Article  CAS  Google Scholar 

  54. Chen MH, Fan H, Zhang Y, Liang XQ, Chen QG, Xia XH. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small. 2020;16(37):2003434. https://doi.org/10.1002/smll.202003434.

    Article  CAS  Google Scholar 

  55. Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB. One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim Acta. 2016;215(10):114. https://doi.org/10.1016/j.electacta.2016.08.074.

    Article  CAS  Google Scholar 

  56. Shinde NM, Shinde PV, Moon YJ, Gunturu KC, Mane RS, O’dwyer C, Kim KH. NiF2 nanorod arrays for supercapattery applications. ACS Omega. 2020;5(17):9768. https://doi.org/10.1021/acsomega.9b04219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52261040 and 51971104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1755 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZH., Gao, JF. & Kong, LB. Electrolyte effect on electrochemical behaviors of manganese fluoride material for aqueous asymmetric and symmetric supercapacitors. Rare Met. 43, 1048–1061 (2024). https://doi.org/10.1007/s12598-023-02515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02515-6

Keywords

Navigation