Skip to main content
Log in

MOF-derived Cu embedded into N-doped mesoporous carbon as a robust support of PdAu nanocatalysts for ethanol electrooxidation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have attracted widespread attention due to their large surface area and porous structure. Rationally designing the nanostructures of MOFs to promote their application in ethanol electrooxidation is still a challenge. Here, a novel Cu-NCNs (Cu-nitrogen-doped carbon nanotubes) support was synthesized by pyrolysis of melamine (MEL) and Cu-ZIF-8 together, and then, Pd–Au nanoalloys were loaded by sodium borohydride reduction method to prepare PdAu@Cu-NCNs catalysts. The generating mesoporous carbon with high specific surface area and favorable electron and mass transport can be used as a potential excellent carrier for PdAu nanoparticles. In addition, the balance of catalyst composition and surface structure was tuned by controlling the content of Pd and Au. Thus, the best-performed Pd2Au2@Cu-NCN-1000–2 (where 1000 means the carrier calcination temperature, and 2 means the calcination constant temperature time) catalyst exhibits better long-term stability and electrochemical activity for ethanol oxidation in alkaline media (4.80 A·mg−1), which is 5.05 times higher than that of commercial Pd/C (0.95 A· mg−1). Therefore, this work is beneficial to further promoting the application of MOFs in direct ethanol fuel cells (DEFCs) and can be used as inspiration for the design of more efficient catalyst support structures.

Graphical abstract

摘要

金属有机骨架 (MOFs) 因其较大的表面积和多孔结构而受到广泛关注。合理设计MOF结构以促进其在乙醇电氧化中的应用仍然是一个挑战。本文通过热解三聚氰胺和Cu-ZIF-8的复合材料来制备新型Cu-NCNs载体, 再通过硼氢化钠还原法负载Pd–Au纳米合金制备PdAu@Cu-NCNs催化剂。生成的介孔碳Cu-NCNs具有高比表面积和良好的电子和质量传输, 可作为PdAu纳米颗粒的潜在优良载体。此外, 通过控制Pd和Au的含量来调节催化剂成分和表面结构的平衡。性能最佳的Pd2Au2@Cu-NCN-1000–2催化剂在碱性介质中的乙醇氧化具有更好的长期稳定性和电化学活性 (4.80 A/mg), 是商业Pd/C(0.95 A/mg) 的5.05倍。因此, 本工作有利于进一步促进MOF在直接乙醇燃料电池中的应用, 可为设计更高效的催化剂载体提供启示。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2020;7(2):305. https://doi.org/10.1093/nsr/nwz137.

    Article  CAS  PubMed  Google Scholar 

  2. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767. https://doi.org/10.1007/s12598-020-01592-1.

    Article  CAS  Google Scholar 

  3. Xiao D, Jiang Q, Xu C, Yang C, Yang L, He H, Huang H. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. J Colloid Interface Sci. 2022;616:781. https://doi.org/10.1016/j.jcis.2022.02.111.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Li Y-R, Li M-X, Li S-N, Liu Y-J, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406. https://doi.org/10.1007/s12598-021-01747-8.

    Article  CAS  Google Scholar 

  5. Jing XH, Guo RH, An SL, Zhang JY, Zhou GZ, Li HQ. Theoretical study on DFT of ethanol adsorption on Pt low-index surfaces. Chin J Rare Met. 2022;46(2):206. https://doi.org/10.13373/j.cnki.cjrm.xy19120008.

  6. Su N, Hu X, Zhang J, Huang H, Cheng J, Yu J, Ge C. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation. Appl Surf Sci. 2017;399:403. https://doi.org/10.1016/j.apsusc.2016.12.095.

    Article  ADS  CAS  Google Scholar 

  7. Lu Y, Chen W. One-pot synthesis of heterostructured Pt–Ru nanocrystals for catalytic formic acid oxidation. Chem Commun. 2011;47(9):2541. https://doi.org/10.1039/C0CC04047A.

    Article  CAS  Google Scholar 

  8. Chen YZ, Zhou M, Huang YF, Ma YY, Yan LY, Zhou XW, Ma XZ, Zhao XL, Chen C, Bai J, Lin DH. Enhanced ethanol oxidation over Pd nanoparticles supported porous graphene-doped MXene using polystyrene particles as sacrificial templates. Rare Met. 2022;41(9):3170. https://doi.org/10.1007/s12598-022-02039-5.

    Article  CAS  Google Scholar 

  9. Wang ML, Zhao J, Wang JJ, Zhang JM, Tian YZ, Yue ZZ, Li D, Hu TJ, Jia JF, Wu HS. MoO3/C-supported Pd nanoparticles as an efficient bifunctional electrocatalyst for ethanol oxidation and oxygen reduction reactions. Rare Met. 2023;42(5):1516. https://doi.org/10.1007/s12598-022-02211-x.

    Article  CAS  Google Scholar 

  10. Tang JX, Tian N, Xiao LP, Chen QS, Wang Q, Zhou ZY, Sun SG. Helical PdPtAu nanowires bounded with high-index facets selectively switch the pathway of ethanol electrooxidation. J Mater Chem A. 2022;10(20):10902. https://doi.org/10.1039/D2TA01011A.

    Article  CAS  Google Scholar 

  11. Wei W, Chen W. “Naked” Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells. J Power Sour. 2012;204:85. https://doi.org/10.1016/j.jpowsour.2012.01.032.

    Article  CAS  Google Scholar 

  12. Wei Y, Wang X, Yu W, Gao Q, Chong XY, Hu CY. Theory designs and experiment studies of Pt-based solid solution ultrahigh temperature alloy. Chin J Rare Met. 2022;46(9):1163. https://doi.org/10.13373/j.cnki.cjrm.XY21070025.

  13. Chen YZ, Ma YY, Zhou YQ, Huang YF, Li SM, Chen Y, Wang RR, Tang JP, Wu P, Zhao XL, Chen C, Zhu ZG, Chen S, Cheng K, Lin DH. Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. Int J Hydrogen Energy. 2022;47(10):6638. https://doi.org/10.1016/j.ijhydene.2021.12.028.

    Article  CAS  Google Scholar 

  14. Fang Z, Zhang Z, Ligani Fereja S, Guo J, Tong X, Zheng Y, Liu R, Liang X, Zhang L, Li Z, Chen W. Highly dispersed 1 nm PtPd bimetallic clusters for formic acid electrooxidation through a CO-free mechanism. J Energy Chem. 2023;78:554. https://doi.org/10.1016/j.jechem.2022.12.018.

    Article  CAS  Google Scholar 

  15. Yu LH, Tao X, Feng SR, Liu JT, Zhang LL, Zhao GZ, Zhu G. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00181-2.

  16. Huang Y-H, Yang SP, Lee PT, Kuo TT, Ho CE. Significant improvement of the thermal stability and electrochemical corrosion resistance of the Au/Pd surface finish through catalytic modification. Corros Sci. 2019;146:112. https://doi.org/10.1016/j.corsci.2018.10.030.

    Article  CAS  Google Scholar 

  17. Nodehi Z, Rafati AA, Ghaffarinejad A. Palladium-silver polyaniline composite as an efficient catalyst for ethanol oxidation. Appl Catal A. 2018;554:24. https://doi.org/10.1016/j.apcata.2018.01.018.

    Article  CAS  Google Scholar 

  18. Farsadrooh M, Noroozifar M, Modarresi-Alam AR. An easy and eco-friendly method to fabricate three-dimensional Pd-M (Cu, Ni) nanonetwork structure decorated on the graphene nanosheet with boosted ethanol electrooxidation activity in alkaline medium. Int J Hydrogen Energy. 2019;44(54):28821. https://doi.org/10.1016/j.ijhydene.2019.09.048.

    Article  CAS  Google Scholar 

  19. Huang R, Wen YH, Zhu ZZ, Sun SG. Atomic-scale insights into structural and thermodynamic stability of Pd–Ni bimetallic nanoparticles. Phys Chem Chem Phys. 2016;18(14):9847. https://doi.org/10.1039/C5CP07555F.

    Article  CAS  PubMed  Google Scholar 

  20. Yang B, Zhang W, Hu S, Liu C, Wang X, Fan Y, Jiang Z, Yang J, Chen W. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J Colloid Interface Sci. 2021;600:503. https://doi.org/10.1016/j.jcis.2021.05.018.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Fan F, Chen D-H, Yang L, Qi J, Fan Y, Wang Y, Chen W. PtCuFe alloy nanochains: Synthesis and composition-performance relationship in methanol oxidation and hydrogen evolution reactions. J Colloid Interface Sci. 2022;628:153. https://doi.org/10.1016/j.jcis.2022.08.032.

    Article  CAS  PubMed  Google Scholar 

  22. Huang H, Wei Y, Yang Y, Yan M, He H, Jiang Q, Yang X, Zhu J. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energy Chem. 2021;57:601. https://doi.org/10.1016/j.jechem.2020.08.063.

    Article  CAS  Google Scholar 

  23. Guo XJ, Zhang Q, Li YN, Chen Y, Yang L, He HY, Xu XT, Huang HJ. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met. 2022;41(6):2108. https://doi.org/10.1007/s12598-021-01882-2.

    Article  CAS  Google Scholar 

  24. Oh HS, Kim K, Ko YJ, Kim H. Effect of chemical oxidation of CNFs on the electrochemical carbon corrosion in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy. 2010;35(2):701. https://doi.org/10.1016/j.ijhydene.2009.10.105.

    Article  CAS  Google Scholar 

  25. Li L, Hu L, Li J, Wei Z. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015;8(2):418. https://doi.org/10.1007/s12274-014-0695-5.

    Article  CAS  Google Scholar 

  26. Su CJ, Li Z, Mao MQ, Ye WH, Ye WH, Zhong JP, Ren QM, Cheng HR, Huang HM, Fu ML, Wu JL, Hu Y, Ye DQ, Xu HH. Unraveling specific role of carbon matrix over Pd/quasi-Ce-MOF facilitating toluene enhanced degradation. J Rare Earth. 2022;40(11):1751. https://doi.org/10.1016/j.jre.2021.09.017.

  27. Ling LL, Liu WJ, Chen SQ, Hu X, Jiang H. MOF templated nitrogen doped carbon stabilized Pt–Co bimetallic nanoparticles: low Pt content and robust activity toward electrocatalytic oxygen reduction reaction. ACS Applied Nano Materials. 2018;1(7):3331. https://doi.org/10.1021/acsanm.8b00533.

    Article  CAS  Google Scholar 

  28. Palaniselvam T, Biswal BP, Banerjee R, Kurungot S. Zeolitic imidazolate framework (ZIF)-derived, hollow-core, nitrogen-doped carbon nanostructures for oxygen-reduction reactions in PEFCs. Chemistry. 2013;19(28):9335. https://doi.org/10.1002/chem.201300145.

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Wu P, Ma Y, Tang J, Zhou X, Ma X, Li W, Zhao X, Chen C, Shih W, Lin D. Single atom iron carbons supported Pd–Ni–P nanoalloy as a multifunctional electrocatalyst for alcohol oxidation. Int J Hydrogen Energy. 2023;48(37):13972. https://doi.org/10.1016/j.ijhydene.2022.12.274.

    Article  CAS  Google Scholar 

  30. Yuan N, Deng YR, Wang SH, Gao L, Yang JL, Zou NC, Liu BX, Zhang JQ, Liu RP, Zhang L. Towards superior lithium–sulfur batteries with metal–organic frameworks and their derivatives. Tungsten. 2022;4(4):269. https://doi.org/10.1007/s42864-022-00186-x

  31. Zhao SN, Song XZ, Song SY, Zhang HJ. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coord Chem Rev. 2017;337:80. https://doi.org/10.1016/j.ccr.2017.02.010.

    Article  ADS  CAS  Google Scholar 

  32. Liang Q, Chen Z, Chen X, Li Y. A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. J Mater Chem A. 2019;7(35):20310. https://doi.org/10.1039/C9TA07481C.

    Article  CAS  Google Scholar 

  33. Huang H, Wang Q, Wei Q, Huang Y. Nitrogen doped mesoporous carbon derived from copolymer and supporting cobalt oxide for oxygen reduction reaction in alkaline media. Int J Hydrogen Energy. 2015;40:6072. https://doi.org/10.1016/j.ijhydene.2015.02.089.

    Article  CAS  Google Scholar 

  34. Chen Y, Yang J, Ma Y, Tang J, Zhao X, Chen C, Wang L, Zhang B, Zhou X, Sun S, Lin D. N-doped carbon-stabilized PdNiCu nanoparticles derived from PdNi@Cu-ZIF-8 as highly active and durable electrocatalyst for boosting ethanol oxidation. Appl Surf Sci. 2023;637: 157944. https://doi.org/10.1016/j.apsusc.2023.157944.

    Article  CAS  Google Scholar 

  35. Zhang S, Pei A, Li G, Zhu L, Li G, Wu F, Lin S, Chen W, Chen BH, Luque R. Pd/CuO–Ni(OH)2/C as a highly efficient and stable catalyst for the electrocatalytic oxidation of ethanol. Green Chem. 2022;24(6):2438. https://doi.org/10.1039/D1GC04799J.

    Article  CAS  Google Scholar 

  36. Chu M, Huang J, Gong J, Qu Y, Chen G, Yang H, Wang X, Zhong Q, Deng C, Cao M, Chen J, Yuan X, Zhang Q. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 2022;15(5):3920. https://doi.org/10.1007/s12274-021-4049-9.

    Article  ADS  CAS  Google Scholar 

  37. Li Z, Chen Y, Ji S, Tang Y, Chen W, Li A, Zhao J, Xiong Y, Wu Y, Gong Y, Yao T, Liu W, Zheng L, Dong J, Wang Y, Zhuang Z, Xing W, He CT, Peng C, Cheong WC, Li Q, Zhang M, Chen Z, Fu N, Gao X, Zhu W, Wan J, Zhang J, Gu L, Wei S, Hu P, Luo J, Li J, Chen C, Peng Q, Duan X, Huang Y, Chen XM, Wang D, Li Y. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat Chem. 2020;12(8):764. https://doi.org/10.1038/s41557-020-0473-9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Feng A, Bai J, Tan Z, Shao W, Yang Y, Hong W, Xiao Z. One-pot synthesis of hierarchical flower-like Pd-Cu alloy support on graphene towards ethanol oxidation. Nanoscale Res Lett. 2017;12(1):521. https://doi.org/10.1186/s11671-017-2290-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc. 2017;139(40):14143. https://doi.org/10.1021/jacs.7b06514.

    Article  CAS  PubMed  Google Scholar 

  40. Yu H, Fisher A, Cheng D, Cao D. Cu, N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces. 2016;8(33):21431. https://doi.org/10.1021/acsami.6b04189.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Wang R, Hu X, Sun Z, Wang X, Guo Y, Yang L, Lou M, Wen P. MOF-derived Co embedded into N-doped nanotube decorated mesoporous carbon as a robust support of Pt catalyst for methanol electrooxidation. Appl Surf Sci. 2020;533: 147319. https://doi.org/10.1016/j.apsusc.2020.147319.

    Article  CAS  Google Scholar 

  42. Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. Nanoscale. 2022;14(3):736. https://doi.org/10.1039/D1NR05987D.

    Article  CAS  PubMed  Google Scholar 

  43. Liang Y, Ma T, Xiong Y, Qiu L, Yu H, Liang F. Highly efficient blackberry-like trimetallic PdAuCu nanoparticles with optimized Pd content for ethanol electrooxidation. Nanoscale. 2021;13(22):9960. https://doi.org/10.1039/D1NR00841B.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou LL, Wei S, Wang WW, Jin Z, Jia CJ. Au/La-CeOx catalyst for CO oxidation: Effect of different atmospheres pretreatment on gold state — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J Rare Earth. 2021;39(4):364. https://doi.org/10.1016/j.jre.2021.01.008.

  45. Zhou Y, Ma R, Candelaria SL, Wang J, Liu Q, Uchaker E, Li P, Chen Y, Cao G. Phosphorus/sulfur co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J Power Sources. 2016;314:27414. https://doi.org/10.1016/j.jpowsour.2016.03.009.

    Article  CAS  Google Scholar 

  46. Zhang X, Lin D, Chen W. Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. RSC Adv. 2015;5(56):45136. https://doi.org/10.1039/C5RA08014B.

    Article  ADS  CAS  Google Scholar 

  47. Zhou Y, Ma R, Candelaria SL, Wang J, Liu Q, Uchaker E, Li P, Chen Y, Cao G. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J Power Sour. 2016;314:39. https://doi.org/10.1016/j.jpowsour.2016.03.009.

    Article  CAS  Google Scholar 

  48. Lin DH, Jiang YX, Wang Y, Sun SG. Silver nanoparticles confined in SBA-15 mesoporous silica and the application as a sensor for detecting hydrogen peroxide. J Nanomater. 2008;2008:1. https://doi.org/10.1155/2008/473791.

    Article  CAS  Google Scholar 

  49. Lin DH, Jiang YX, Chen SR, Chen SP, Sun SG. Preparation of Pt nanoparticles supported on ordered mesoporous carbon FDU-15 for electrocatalytic oxidation of CO and methanol. Electrochim Acta. 2012;67:127. https://doi.org/10.1016/j.electacta.2012.02.007.

    Article  CAS  Google Scholar 

  50. Feng T, Zhang M. A mixed-ion strategy to construct CNT-decorated Co/N-doped hollow carbon for enhanced oxygen reduction. Chem Commun (Camb). 2018;54(82):11570. https://doi.org/10.1039/C8CC05959D.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Yi Q, Deng Z, Zhou X, Nie H. Excellent electroactivity of ternary Pd–Ag–Sn nanocatalysts for ethanol oxidation. Catal Lett. 2018;148(4):1190. https://doi.org/10.1007/s10562-018-2335-2.

    Article  CAS  Google Scholar 

  52. Clímaco FR, Almeida CVS, Aristides SS, Eguiluz KIB, Salazar-Banda GR. Influence of the composition and morphology of PdNiFe/C nanocatalysts toward ethanol oxidation. Chem Phys Lett. 2022;801:139745. https://doi.org/10.1016/j.cplett.2022.139745.

    Article  CAS  Google Scholar 

  53. Dementjev AP, de Graaf A, van de Sanden MCM, Maslakov KI, Naumkin AV, Serov AA. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam Relat Mater. 2000;9(11):1904. https://doi.org/10.1016/S0925-9635(00)00345-9.

    Article  ADS  CAS  Google Scholar 

  54. Le SD, Nishimura S. Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid. Appl Catal B. 2021;282:119619. https://doi.org/10.1016/j.apcatb.2020.119619.

    Article  CAS  Google Scholar 

  55. Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources. 2009;188(1):38. https://doi.org/10.1016/j.jpowsour.2008.11.087.

    Article  CAS  Google Scholar 

  56. Ren G, Lu X, Li Y, Zhu Y, Dai L, Jiang L. Porous core-shell Fe3C embedded n-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces. 2016;8(6):4118. https://doi.org/10.1021/acsami.5b11786.

    Article  CAS  PubMed  Google Scholar 

  57. Almeida CVS, Eguiluz KIB, Salazar-Banda GR. Superior ethanol electrooxidation activity of Pd supported on Ni(OH)2/C. The effect of Ni(OH)2 nanosheets content. J Electroanal Chem. 2020;878:114683. https://doi.org/10.1016/j.jelechem.2020.114683.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Program for Professor of Special Appointment (Eastern Scholar) at SIHL, Project of Shanghai Municipal Science and Technology Commission (No. 22DZ2291100), Open Fund of Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health (No. NCMEH2022Y02), Gaoyuan Discipline of Shanghai-Materials Science and Engineering, and Shanghai Polytechnic University-Drexel University Joint Research Center for Optoelectronics and Sensing. This work is also supported by the Science Fund for Distinguished Young Scholars of Fujian Province (No. 2019J06027), the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices (Soochow University) (No. KS2022), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin-Wei Zhang or Dong-Hai Lin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9083 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YF., Wu, P., Tang, JP. et al. MOF-derived Cu embedded into N-doped mesoporous carbon as a robust support of PdAu nanocatalysts for ethanol electrooxidation. Rare Met. 43, 1083–1094 (2024). https://doi.org/10.1007/s12598-023-02512-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02512-9

Keywords

Navigation