Skip to main content
Log in

Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)—although highly efficient—undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, S.; Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96–119.

    Article  Google Scholar 

  2. Zhao, Y.; Wang, Y.; Cheng, X.; Dong, L.; Zhang, Y.; Zang, J. Platinum nanoparticles supported on epitaxial TiC/nanodiamond as an electrocatalyst with enhanced durability for fuel cells. Carbon 2014, 67, 409–416.

    Article  Google Scholar 

  3. U.S. Departement of Energy. Fuel cell technical team roadmap. 2013. http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf.

    Google Scholar 

  4. Sun, X.; Li, D.; Ding, Y.; Zhu, W.; Guo, S.; Wang, Z. L.; Sun, S. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 2014, 136, 5745–5749.

    Article  Google Scholar 

  5. Su, L.; Jia, W. Z.; Li, C. M.; Lei, Y. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells. ChemSusChem 2014, 7, 361–378.

    Article  Google Scholar 

  6. Marcu, A.; Toth, G.; Pietrasz, P.; Waldecker, J. Cathode catalysts degradation mechanism from liquid electrolyte to membrane electrode assembly. C. R. Chimie. 2014, 17, 752–759.

    Article  Google Scholar 

  7. Takenaka, S.; Miyamoto, H.; Utsunomiya, Y.; Matsune, H.; Kishida, M. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C 2014, 118, 774–783.

    Article  Google Scholar 

  8. Kuo, P.L.; Hsu, C. H.; Wu, H. M.; Hsu, W. S.; Kuo, D. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells 2012, 12, 649–655.

    Article  Google Scholar 

  9. Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.

    Google Scholar 

  10. Park, J.E.; Jang, Y. J.; Kim, Y. J.; Song, M. S.; Yoon, S.; Kim, D. H.; Kim, S. J. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 103–109.

    Article  Google Scholar 

  11. Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Edit. 2012, 51, 4209–4212.

    Article  Google Scholar 

  12. Wang, X.; Chen, Z.; Wang, Y.; Wang, R. Rare-earth-doped Pt/Ba/Ce0.6Zr0.4O2-Al2O3 for NOx storage and reduction: The effect of rare-earth doping on efficiency and stability. ChemCatChem 2014, 6, 237–244.

    Article  Google Scholar 

  13. Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; Stamenkovic, V. R.; Markovic, N. M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474–2478.

    Article  Google Scholar 

  14. Tripković, V.; Abild-Pedersen, F.; Studt, F. Cerri, I.; Nagami, T.; Bligaard, T.; Rossmeisl, J. Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 2012, 4, 228–235.

    Article  Google Scholar 

  15. Pan, Z.; Xiao, Y.; Fu, Z.; Zhan, G.; Wu, S.; Xiao, C.; Hu, G.; Wei, Z. Hollow and porous titanium nitride nanotubes as high-performance catalyst supports for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 13966–13975.

    Article  Google Scholar 

  16. Yin, J.; Wang, L.; Tian, C.; Tan, T.; Mu, G.; Zhao, L.; Fu, H. Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction. Chem. -Eur. J. 2013, 19, 13979–13986.

    Article  Google Scholar 

  17. Liu, X.; Fu, G.; Chen, Y.; Tang, Y.; She, P.; Lu, T. Pt-Pd-Co trimetallic alloy network nanostructures with superior electrocatalytic activity towards the oxygen reduction reaction. Chem. -Eur. J. 2014, 20, 585–590.

    Article  Google Scholar 

  18. Mathias, M.F.; Makharia, R.; Gasteiger, H. A.; Conley, J. J.; Fuller, T. J.; Gittleman, C. J.; Kocha, S. S.; Miller, D. P.; Mittelsteadt, C. K.; et al. Two fuel cell cars in every garage. Electrochem. Soc. Interface 2005, 3, 24–35.

    Google Scholar 

  19. Makharia, R.; Kocha, S.; Yu, P.; Sweikart, M. A.; Gu, W.; Wagner, F.; Gasteiger, H. A. Durable PEM fuel cell electrode materials: Requirements and benchmarking methodologies. ECS Trans. 2006, 1, 3–18.

    Article  Google Scholar 

  20. Zhang, Y.; Chen, S.; Wang, Y.; Ding, W.; Wu, R.; Li, L.; Qi, X.; Wei, Z. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. J. Power Sources 2015, 273, 62–69.

    Article  Google Scholar 

  21. Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y. G.; Wan, L.; Shao, Z.; Li, L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252–13255.

    Article  Google Scholar 

  22. Carpenter, M.K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 8535–8542.

    Article  Google Scholar 

  23. Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 2006, 158, 154–159.

    Article  Google Scholar 

  24. Saleh, F.S.; Easton, E. B. Diagnosing degradation within PEM Fuel cell catalyst layers using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2012, 159, B546-B553.

  25. Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J. C.; Moukheiber, E.; et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs: Energy Environ. 2014, 3, 540–560.

    Google Scholar 

  26. Shrestha, S.; Liu, Y.; Mustain, W. E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: A review. Catal. Rev. 2011, 53, 256–336.

    Article  Google Scholar 

  27. Li, L.; Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Xia, M. R.; Wang, Y. Q. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts. Phys. Chem. Chem. Phys. 2012, 14, 16581–16587.

    Article  Google Scholar 

  28. Shao, Y.; Yin, G.; Gao, Y.; Shi, P. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J. Electrochem. Soc. 2006, 153, A1093-A1097.

  29. Meier, J.C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal. 2012, 2, 832–843.

    Article  Google Scholar 

  30. Yu, X.W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144.

    Article  Google Scholar 

  31. Gilbert, J.A.; Kariuki, N. N.; Subbaraman, R.; Kropf, A. J.; Smith, M. C.; Holby, E. F.; Morgan, D.; Myers, D. J. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation. J. Am. Chem. Soc. 2012, 134, 14823–14833.

    Article  Google Scholar 

  32. Fayette, M.; Nutariya, J.; Vasiljevic, N.; Dimitrov, N. A study of Pt dissolution during formic acid oxidation. ACS Catal. 2013, 3, 1709–1718.

    Article  Google Scholar 

  33. Topalov, A.A.; Katsounaros, I.; Auinger, M.; Cherevko, S.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Edit. 2012, 51, 12613–12615.

    Article  Google Scholar 

  34. Umeda, M.; Kuwahara, Y.; Nakazawa, A.; Inoue, M. Pt degradation mechanism in concentrated sulfuric acid studied using rotating ring-disk electrode and electrochemical quartz crystal microbalance. J. Phys. Chem. C 2009, 113, 15707–15713.

    Article  Google Scholar 

  35. Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2009, 132, 596–600.

    Article  Google Scholar 

  36. Noël, J.M.; Yu, Y.; Mirkin, M. V. Dissolution of Pt at moderately negative potentials during oxygen reduction in water and organic media. Langmuir 2013, 29, 1346–1350.

    Article  Google Scholar 

  37. Ishimoto, T.; Ogura, T.; Umeda, M.; Koyama, M. Theoretical study on dissolution and reprecipitation mechanism of Pt complex in Pt electrocatalyst. J. Phys. Chem. C 2011, 115, 3136–3142.

    Article  Google Scholar 

  38. Merte, L.R.; Behafarid, F.; Miller, D. J.; Friebel, D.; Cho, S.; Mbuga, F.; Sokaras, D.; Alonso-Mori, R.; Weng, T. C.; Nordlund, D.; et al. Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy. ACS Catal. 2012, 2, 2371–2376.

    Article  Google Scholar 

  39. Rinaldo, S.G.; Stumper, J. R.; Eikerling, M. Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. J. Phys. Chem. C 2010, 114, 5773–5785.

    Article  Google Scholar 

  40. Tang, L.; Li, X.; Cammarata, R. C.; Friesen, C.; Sieradzki, K. Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 11722–11726.

    Article  Google Scholar 

  41. Hansen, T.W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

    Article  Google Scholar 

  42. Yoshida, K.; Bright, A.; Tanaka, N. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy. J. Electron Microsc. 2012, 61, 99–103.

    Article  Google Scholar 

  43. Hoogers, G. Fuel Cell Technology Handbook; CRC Press: New York, 2002.

    Book  Google Scholar 

  44. Speder, J.; Zana, A.; Spanos, I.; Kirkensgaard, J. J. K.; Mortensen, K.; Hanzlik, M.; Arenz, M. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts-The influence of the platinum to carbon ratio on the degradation rate. J. Power Sources 2014, 261, 14–22.

    Article  Google Scholar 

  45. Wang, J.; Yin, G.; Shao, Y.; Zhang, S.; Wang, Z.; Gao, Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007, 171, 331–339.

    Article  Google Scholar 

  46. Li, L.; Xue, Y.; Xia, M. R.; Chen, S. G.; Wei, Z. D. Density functional theory study of electronic structure and catalytic activity for Pt/C catalyst covered by polyaniline. Scientia Sinica Chimica 2013, 43, 1566–1577.

    Article  Google Scholar 

  47. Higgins, D.C.; Meza, D.; Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 2010, 114, 21982–21988.

    Article  Google Scholar 

  48. Takenaka, S.; Matsumori, H.; Nakagawa, K.; Matsune, H.; Tanabe, E.; Kishida, M. Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J. Phys. Chem. C 2007, 111, 15133–15136.

    Article  Google Scholar 

  49. Du, C.; Chen, M.; Cao, X.; Yin, G.; Shi, P. A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem. Commun. 2009, 11, 496–498.

    Article  Google Scholar 

  50. Masa, J.; Bordoloi, A.; Muhler, M.; Schuhmann, W.; Xia, W. Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions. ChemSusChem 2012, 5, 523–525.

    Article  Google Scholar 

  51. Xia, B.Y.; Ding, S.; Wu, H. B.; Wang, X.; Wen, X. Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. Rsc. Adv. 2012, 2, 792–796.

    Article  Google Scholar 

  52. Wang, H.; Zheng, J.; Peng, F.; Yu, H. Pt/IrO2/CNT anode catalyst with high performance for direct methanol fuel cells. Catal. Commun. 2013, 33, 34–37.

    Article  Google Scholar 

  53. Chen, S.; Wei, Z.; Guo, L.; Ding, W.; Dong, L.; Shen, P.; Qi, X.; Li, L. Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support. Chem. Commun. 2011, 47, 10984–10986.

    Article  Google Scholar 

  54. Kim, Y.T.; Mitani, T. Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J. Catal. 2006, 238, 394–401.

    Article  Google Scholar 

  55. Park, S.A.; Kim, D. S.; Kim, T. J.; Kim, Y. T. Strong interaction between Pt and thiolated carbon for electrocatalytic durability enhancement. ACS Catal. 2013, 3, 3067–3074.

    Article  Google Scholar 

  56. Hsu, C.H.; Liao, H. Y.; Kuo, P. L. Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes. J. Phys. Chem. C 2010, 114, 7933–7939.

    Article  Google Scholar 

  57. Wang, S.; Yu, D.; Dai, L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2011, 133, 5182–5185.

    Article  Google Scholar 

  58. He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 2011, 27, 5582–5588.

    Article  Google Scholar 

  59. Guo, S.; Dong, S.; Wang, E. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv. Mater. 2010, 22, 1269–1272.

    Article  Google Scholar 

  60. Fujigaya, T.; Nakashima, N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 2013, 25, 1666–1681.

    Article  Google Scholar 

  61. Guo, S.; Sun, S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 2492–2495.

    Article  Google Scholar 

  62. Groves, M.N.; Malardier-Jugroot, C.; Jugroot, M. Improving platinum catalyst durability with a doped graphene support. J. Phys. Chem. C 2012, 116, 10548–10556.

    Article  Google Scholar 

  63. Choi, C.H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

    Article  Google Scholar 

  64. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Edit. 2012, 51, 11496–11500.

    Article  Google Scholar 

  65. Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    Article  Google Scholar 

  66. Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Edit. 2013, 52, 11755–11759.

    Article  Google Scholar 

  67. Liu, S.H.; Wu, M. T.; Lai, Y. H.; Chiang, C. C.; Yu, N.; Liu, S. B. Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. J. Mater. Chem. 2011, 21, 12489–12496.

    Article  Google Scholar 

  68. Wu, G.; Li, D.; Dai, C.; Wang, D.; Li, N. Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir 2008, 24, 3566–3575.

    Article  Google Scholar 

  69. He, D.; Jiang, Y.; Lv, H.; Pan, M.; Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B: Environ. 2013, 379–388.

    Google Scholar 

  70. Muhich, C.L.; Westcott, J. Y.; Morris, T. C.; Weimer, A. W.; Musgrave, C. B. The effect of N and B doping on graphene and the adsorption and migration behavior of Pt atoms. J. Phys. Chem. C 2013, 117, 10523–10535.

    Article  Google Scholar 

  71. Vinayan, B.P.; Nagar, R.; Rajalakshmi, N.; Ramaprabhu, S. Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 2012, 22, 3519–3526.

    Article  Google Scholar 

  72. Li, Y.H.; Hung, T. H.; Chen, C. W. A first-principles study of nitrogen- and boron-assisted platinum adsorption on carbon nanotubes. Carbon 2009, 47, 850–855.

    Article  Google Scholar 

  73. Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. A.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2011, 6, 205–211.

    Article  Google Scholar 

  74. Higgins, D.; Hoque, M. A.; Seo, M. H.; Wang, R.; Hassan, F.; Choi, J. Y.; Pritzker, M.; Yu, A.; Zhang, J.; Chen, Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 2014, 24, 4325–4336.

    Article  Google Scholar 

  75. Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457–20465.

    Article  Google Scholar 

  76. Wang, X.X.; Tan, Z. H.; Zeng, M.; Wang, J. N. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability. Sci. Rep. 2014, 4, 4437.

    Google Scholar 

  77. Zhang, C.W.; Xu, L. B.; Shan, N. N.; Sun, T. T.; Chen, J. F.; Yan, Y. S. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal. 2014, 4, 1926–1930.

    Article  Google Scholar 

  78. Santiago, D.; Rodríguez-Calero, G. G.; Palkar, A.; Barraza-Jimenez, D.; Galvan, D. H.; Casillas, G.; Mayoral, A.; Jose-Yacamán, M.; Echegoyen, L.; Cabrera, C. R. Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 2012, 28, 17202–17210.

    Article  Google Scholar 

  79. Ho, V.T. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716–11724.

    Article  Google Scholar 

  80. Kumar, A.; Ramani, V. Strong metal-support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catal. 2014, 4, 1516–1525.

    Article  Google Scholar 

  81. Xia, M.; Ding, W.; Xiong, K.; Li, L.; Qi, X.; Chen, S.; Hu, B.; Wei, Z. Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 10581–10588.

    Article  Google Scholar 

  82. Ding, W.; Xia, M. R.; Wei, Z. D.; Chen, S. G.; Hu, J. S.; Wan, L. J.; Qi, X. Q.; Hu, X. H.; Li, L. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. Chem. Commun. 2014, 50, 6660–6663.

    Article  Google Scholar 

  83. Yang, M.; Cui, Z.; DiSalvo, F. J. Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Phys. Chem. Chem. Phys. 2013, 15, 1088–1092.

    Article  Google Scholar 

  84. Roca-Ayats, M.; García, G.; Galante, J. L.; Peña, M. A.; Martínez-Huerta, M. V. Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells. Int. J. Hydrogen Energy 2014, 39, 5477–5484.

    Article  Google Scholar 

  85. Qiu, Z.; Huang, H.; Du, J.; Tao, X.; Xia, Y.; Feng, T.; Gan, Y.; Zhang, W. Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation. J. Mater. Chem. A 2014, 2, 8003–8008.

    Article  Google Scholar 

  86. Kimmel, Y.C.; Xu, X.; Yu, W.; Yang, X.; Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 2014, 4, 1558–1562.

    Article  Google Scholar 

  87. Avasarala, B.; Haldar, P. Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications. Energy 2013, 57, 545–553.

    Article  Google Scholar 

  88. Zhang, R.Q.; Lee, T. H.; Yu, B. D.; Stampfl, C.; Soon, A. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys. Chem. Chem. Phys. 2012, 14, 16552–16557.

    Article  Google Scholar 

  89. Ma, X.; Meng, H.; Cai, M.; Shen, P. K. Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 1954–1957.

    Article  Google Scholar 

  90. Xie, X.; Chen, S.; Ding, W.; Nie, Y.; Wei, Z. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013, 49, 10112–10114.

    Article  Google Scholar 

  91. Xie, X.; Xue, Y.; Li, L.; Chen, S.; Nie, Y.; Ding, W.; Wei, Z. Surface Al leached Ti3AlC2 substituting carbon for catalyst support served in a harsh corrosive electrochemical system. Nanoscale 2014, 6, 11035–11040.

    Article  Google Scholar 

  92. Lv, H.; Mu, S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 2014, 6, 5063–5074.

    Article  Google Scholar 

  93. Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C. Y.; Huang, X.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 2012, 134, 12326–12329.

    Article  Google Scholar 

  94. Ramesh, P.; Itkis, M. E.; Tang, J. M.; Haddon, R. C. SWNT-MWNT hybrid architecture for proton exchange membrane fuel cell cathodes. J. Phys. Chem. C 2008, 112, 9089–9094.

    Article  Google Scholar 

  95. Wang, Y.J.; Wilkinson, D. P.; Neburchilov, V.; Song, C.; Guest, A.; Zhang, J. Ta and Nb co-doped TiO2 and its carbon-hybrid materials for supporting Pt-Pd alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 12681–12685.

    Article  Google Scholar 

  96. Kou, R.; Shao, Y.; Mei, D.; Nie, Z.; Wang, D.; Wang, C.; Viswanathan, V. V.; Park, S.; Aksay, I. A.; Lin, Y.; et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 2011, 133, 2541–2547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, L., Li, J. et al. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 8, 418–440 (2015). https://doi.org/10.1007/s12274-014-0695-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0695-5

Keywords

Navigation