Skip to main content
Log in

Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) ceramic nanocomposites incorporating graphene–carbon black (GRCB) fillers were fabricated by spark plasma sintering process. The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated. The weakly real permittivity (ε′)-negative response (ε′ ~ − 1 × 102) was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks. With enhancing three-dimensional GRCB network, the plasma frequency of metacomposites increased while the damping factor decreased. Herein, the ε′-negative values of metacomposites were tuned from − 102 to − 104 orders of magnitude and ε′-near-zero (ENZ) frequencies from ~ 142 to ~ 340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers. The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics. The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media. This work achieves the tunable ε′-negative and ε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites, which opens up the possibility of designing high-performance EM shielding materials based on metacomposites.

Graphical abstract

摘要

采用放电等离子烧结工艺制备了石墨烯炭黑(GRCB)二元复合功能相填充的钛酸铜钙(CCTO)基陶瓷纳米复合材料。系统研究了导电GRCB功能相对GRCB/CCTO三元超复合材料介电响应的逾渗效应。在所构建的三维GRCB网络中,自由载流子的弱低频等离振荡行为产生了极弱的负介电响应。随着三维GRCB网络的增强,超复合材料的等离振荡频率增加,阻尼因子降低。超复合材料的负介电常数可以在从-102到-104数量级之间调控,介电近零频率在~142到~340 MHz间调控,这得益于GRCB二元功能相的适中的载流子浓度。本文进一步采用Drude模型和等效电路模型来解释超复合材料的介电和电学特性。所获得的超复合材料在增强等离振荡的同时表现出较强的电磁屏蔽效应,甚至在介电近零介质中实现了完美级的电磁屏蔽效果。这项工作实现了可调的负介电常数和介电近零响应,更重要的是阐明了其在陶瓷基三元超复合材料中的调控机制,为设计基于超复合材料的高性能电磁屏蔽材料开辟了新的可能性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi Z, Fan R, Yan K, Sun K, Zhang M, Wang C, Liu X, Zhang X. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Funct Mater. 2013;23(33):4123. https://doi.org/10.1002/adfm.201202895.

    Article  CAS  Google Scholar 

  2. Shi Z, Fan R, Zhang Z, Qian L, Gao M, Zhang M, Zheng L, Zhang X, Yin L. Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater. 2012;24(17):2349. https://doi.org/10.1002/adma.201200157.

    Article  CAS  Google Scholar 

  3. Sun K, Duan W, Lei Y, Wang Z, Tian J, Yang P, He Q, Chen M, Wu H, Zhang Z, Fan R. Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion. Compos Part A Appl S. 2022;156:106854. https://doi.org/10.1016/j.compositesa.2022.106854.

    Article  CAS  Google Scholar 

  4. Gao P, Jia CC, Cao WB, Wang CC, Xu GL, Liang D, Cui ZW. Dielectric properties of AlN/Mo composite ceramics prepared by spark plasma sintering method at different processing conditions. Rare Met. 2022;41(4):1369. https://doi.org/10.1007/s12598-015-0486-5.

    Article  CAS  Google Scholar 

  5. Fan G, Wang Z, Sun K, Liu Y, Fan R. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol. 2021;61:125. https://doi.org/10.1016/j.jmst.2020.06.013.

    Article  CAS  Google Scholar 

  6. Rizza C, Castaldi G, Galdi V. Short-pulsed metamaterials. Phys Rev Lett. 2022;128(25):257402. https://doi.org/10.1103/PhysRevLett.128.257402.

    Article  CAS  Google Scholar 

  7. Eichelberg A, Watkins A, Bilal O. Metamaterials with reprogrammable reciprocity. Phys Rev Appl. 2022;18(5):054049. https://doi.org/10.1103/PhysRevApplied.18.054049.

    Article  CAS  Google Scholar 

  8. Zhang X, Cui T. Extensible on-chip mode manipulations based on metamaterials. Light-Sci Appl. 2022;11(1):200. https://doi.org/10.1038/s41377-022-00901-w.

    Article  CAS  Google Scholar 

  9. Liu Y, Wang G, Pendry J, Zhang S. All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials. Light-Sci Appl. 2022;11(1):276. https://doi.org/10.1038/s41377-022-00972-9.

    Article  CAS  Google Scholar 

  10. Qian C, Wang Z, Qian H, Cai T, Zheng B, Lin X, Shen Y, Kaminer I, Li E, Chen H. Dynamic recognition and mirage using neuro-metamaterials. Nat Commun. 2022;13(1):2694. https://doi.org/10.1038/s41467-022-30377-6.

    Article  CAS  Google Scholar 

  11. Wei Z, Wang Z, Xu C, Fan G, Song X, Liu Y, Fan R. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure. J Mater Sci Technol. 2022;112:77. https://doi.org/10.1016/j.jmst.2021.11.002.

    Article  CAS  Google Scholar 

  12. Tang X, Zhang Z, Zheng K, Wu Y, Chen Z, Wang C, Shi Z. Low dielectric loss in poly (vinyl alcohol)/graphene metacomposite films with negative permittivity prepared by spin coating. Polymer. 2023. https://doi.org/10.1016/j.polymer.2023.126092.

    Article  Google Scholar 

  13. Swetha P, Aswini R, Binesh M, Muhammed Shahin TH, Kishore S, Sindhu S. Cost efficient fabrication of flexible polymer metacomposites: impact of carbon in achieving tunable negative permittivity at low radio frequency range. Mater Today Commun. 2023;34:105287. https://doi.org/10.1016/j.mtcomm.2022.105287.

    Article  CAS  Google Scholar 

  14. Rehman F, Li JB, Ahmed P, Khan MS, Saeed Y, Khan A, Zubair M. Dielectric relaxation and conduction behaviors of Aurivillius Na0.5Bi4.5Ti4O1.5 ceramics with Na doping. Rare Met. 2021;40(5):1247. https://doi.org/10.1007/s12598-020-01634-8.

    Article  CAS  Google Scholar 

  15. İç S, Kalkan N, Karabul Y, Özdemir Z, Kılıç M. Analyses of negative real permittivity behavior, AC conductivity and impedance properties of (YxEu1-x)Ba2Cu3O6.5 ceramics. Ceram Int. 2023;49(14):23546. https://doi.org/10.1016/j.ceramint.2023.04.189.

    Article  CAS  Google Scholar 

  16. Liu Y, Cheng C, Zou J, Fu J, Wang J, Zhou J, Ma R, Cui H, Hu Z, Wang T, Du Y, Fan R. Highly tunable negative permittivity of carbon nanofiber/alumina metacomposites at different external temperatures. Compos Part A-Appl S. 2023. https://doi.org/10.1016/j.compositesa.2023.107660.

    Article  Google Scholar 

  17. Zhou YL, Cheng WN, Bai YZ, Hou C, Li K, Huang YA. Rise of flexible high-temperature electronics. Rare Met. 2023;42(6):1773. https://doi.org/10.1007/s12598-023-02298-w.

    Article  CAS  Google Scholar 

  18. Xie P, Zhang Z, Wang Z, Sun K, Fan R. Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research. 2019. https://doi.org/10.34133/2019/1021368.

    Article  Google Scholar 

  19. Wang Z, Sun K, Xie P, Hou Q, Liu Y, Gu Q, Fan R. Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater. 2020;185:412. https://doi.org/10.1016/j.actamat.2019.12.034.

    Article  CAS  Google Scholar 

  20. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa T, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater. 2022;5(2):679. https://doi.org/10.1007/s42114-022-00479-2.

    Article  Google Scholar 

  21. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R, Wang J. Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics. 2020;6(1):145. https://doi.org/10.1016/j.jmat.2020.01.007.

    Article  Google Scholar 

  22. Cheng C, Jiang Y, Sun X, Shen J, Wang T, Fan G, Fan R. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Compos Part A Appl S. 2020;130:105753. https://doi.org/10.1016/j.compositesa.2019.105753.

    Article  CAS  Google Scholar 

  23. Smith D, Padilla J, Vier D, Nemat-Nasser S, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184. https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  CAS  Google Scholar 

  24. Schurig D, Mock J, Justice B, Cummer S, Pendry J, Starr A, Smith D. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977. https://doi.org/10.1126/science.1133628.

    Article  CAS  Google Scholar 

  25. Uddin A, Qin F, Estevez D, Jiang S, Panina L, Peng H. Microwave programmable response of Co-based microwire polymer composites through wire microstructure and arrangement optimization. Compos B Eng. 2019;176:107190. https://doi.org/10.1016/j.compositesb.2019.107190.

    Article  CAS  Google Scholar 

  26. Fan G, Wang Z, Wei Z, Liu Y, Fan R. Negative dielectric permittivity and high-frequency diamagnetic responses of percolated nickel/rutile cermets. Compos Part a-Appl S. 2020;139:106132. https://doi.org/10.1016/j.compositesa.2020.106132.

    Article  CAS  Google Scholar 

  27. Fan G, Zhao Y, Xin J, Zhang Z, Xie P, Cheng C. Negative permittivity in titanium nitride-alumina composite for functionalized structural ceramics. J Am Ceram Soc. 2020;103(1):403. https://doi.org/10.1111/jace.16763.

    Article  CAS  Google Scholar 

  28. Deng C, Wu Y, Qu Y, Ding J, Qi X, Sun K. Highly tunable ε′-negative and ε′-near-zero response at extremely low frequency region of CaCu3Ti4O12/graphitized-MWCNT metacomposites. Compos Commun. 2023;43:101724. https://doi.org/10.1016/j.coco.2023.101724.

    Article  Google Scholar 

  29. Fan G, Feng T, Qu Y, Hao C, Liu Y. Dielectric properties and negative permittivity performance modulated by dual fillers in CNTs/TiN/CaCu3Ti4O12 ternary composites. Ceram Int. 2022;48(19):28135. https://doi.org/10.1016/j.ceramint.2022.06.118.

    Article  CAS  Google Scholar 

  30. Yin J, Wang S, Di Carlo A, Chang A, Wan X, Xu J, Xiao X, Chen J. Smart textiles for self-powered biomonitoring. Med-X. 2023;1(3):3. https://doi.org/10.1007/s44258-023-00001-3.

    Article  Google Scholar 

  31. Wang Z, Yin K, Zhang Y, Sun K, Xie L, Cong M, Cao S, Lei Y, Li X, Fan R. Two-dimensional Ti3C2Tx/carbonized wood metacomposites with weakly negative permittivity. Adv Compos Hybrid Mater. 2022;5(3):2369. https://doi.org/10.1007/s42114-022-00442-1.

    Article  CAS  Google Scholar 

  32. Zhang Z, Liu M, Ibrahim M, Wu H, Wu Y, Li Y, Mersal G, Azab I, El-Bahy S, Huang M, Jiang Y, Liang G, Xie P, Liu C. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater. 2022;5(2):1054. https://doi.org/10.1007/s42114-022-00486-3.

    Article  CAS  Google Scholar 

  33. Liu Y, Cheng C, Sun W, Zhang Z, Ma R, Zhou J, Wang J, Wang T, Zheng Q, Du Y, Shen J, Fan R. Negative permittivity behavior of carbon fibre/alumina ceramic composites prepared by hot-press sintering. Ceram Int. 2022;48(7):10031. https://doi.org/10.1016/j.ceramint.2021.12.212.

    Article  CAS  Google Scholar 

  34. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Ma. 2021. https://doi.org/10.1007/s42114-021-00378-y.

    Article  Google Scholar 

  35. Sun X, Cheng C, Shen J, Liu Y, Wang T, Ma Q, Fan R. Fine-tuning of negative permittivity behavior in amorphous carbon/alumina metacomposites. Ceram Int. 2020;46(7):8942. https://doi.org/10.1016/j.ceramint.2019.12.141.

    Article  CAS  Google Scholar 

  36. Liu M, Wu H, Wu Y, Xie P, Pashameah R, Abo-Dief H, El-Bahy S, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Ma. 2022;5(3):2021. https://doi.org/10.1007/s42114-022-00541-z.

    Article  CAS  Google Scholar 

  37. Hao XN, Liu X. Molecular dynamics study on microscale residual stress of graphene/aluminum nanocomposites by selective laser sintering. Rare Met. 2022;41(11):3677. https://doi.org/10.1007/s12598-022-02079-x.

    Article  CAS  Google Scholar 

  38. Qu Y, Wu Y, Fan G, Xie P, Liu Y, Zhang Z, Xin J, Jiang Q, Sun K, Fan R. Tunable radio-frequency negative permittivity of Carbon/CaCu3Ti4O12 metacomposites. J Alloy Compd. 2020;834:155164. https://doi.org/10.1016/j.jallcom.2020.155164.

    Article  CAS  Google Scholar 

  39. Cheng C, Liu Y, Shi S, Ma R, Wang T, Zheng Q, Zhao Y, Yu X, Shen J, Fan R. Negative permittivity behavior in carbon fibre/silicon nitride ceramic composites prepared by spark plasma sintering. Ceram Int. 2021;47(24):35201. https://doi.org/10.1016/j.ceramint.2021.09.063.

    Article  CAS  Google Scholar 

  40. Deng C, Li Y, Wang H, Qu Y, Qi X, Peng Z, Chen Z, Shen H, Sun K, Fan R. Spark plasma sintered graphene/copper calcium titanate ceramic composites with negative permittivity and enhanced thermal conductivity. Ceram Int. 2023;49(10):16149. https://doi.org/10.1016/j.ceramint.2023.01.212.

    Article  CAS  Google Scholar 

  41. Qu Y, Wu Y, Wu J, Sun K, Fan R. Simultaneous epsilon-negative and mu-negative property of Ni/CaCu3Ti4O12 metacomposites at radio-frequency region. J Alloy Compd. 2020;847:156526. https://doi.org/10.1016/j.jallcom.2020.156526.

    Article  CAS  Google Scholar 

  42. Qu Y, Wu J, Wang Z, Liu Y, Xie P, Wang Z, Tian J, Fan R. Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scripta Mater. 2021;203:114067. https://doi.org/10.1016/j.scriptamat.2021.114067.

    Article  CAS  Google Scholar 

  43. Qu Y, Wu H, Xie P, Zeng N, Chen Y, Gong X, Yang J, Peng Q, Xie Y, Qi X. Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02346-5.

    Article  Google Scholar 

  44. Zhou Y, Qu Y, Yin L, Cheng W, Huang Y, Fan R. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos Sci Technol. 2022;223:109415. https://doi.org/10.1016/j.compscitech.2022.109415.

    Article  CAS  Google Scholar 

  45. Qu Y, Wang Z, Xie P, Wang Z, Fan R. Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol. 2022;217:109092. https://doi.org/10.1016/j.compscitech.2021.109092.

    Article  CAS  Google Scholar 

  46. Cheng C, Wu Y, Qu Y, Ma R, Fan R. Radio-frequency negative permittivity of carbon nanotube/copper calcium titanate ceramic nanocomposites fabricated by spark plasma sintering. Ceram Int. 2020;46(2):2261. https://doi.org/10.1016/j.ceramint.2019.09.213.

    Article  CAS  Google Scholar 

  47. Yan K, Shen L, Yin F, Qi G, Zhang X, Fan R, Bao N. Metallic ferromagnet of La0.5Sr0.5MnO3 with negative permittivity and permeability. Adv Electron Mater. 2022;8(2):2101020. https://doi.org/10.1002/aelm.202101020.

    Article  CAS  Google Scholar 

  48. Song J, Shi G, Song X, Zhang Z, Liu Y, Fan R. Tunable negative permittivity behavior in percolated MWCNTs/PVDF composites. Mater Lett. 2022;318:132051. https://doi.org/10.1016/j.matlet.2022.132051.

    Article  CAS  Google Scholar 

  49. Song X, Shi G, Fan G, Liu Y, Fan R. Low-frequency plasmonic state and tunable negative permittivity in percolative graphite/barium titanate composites. Ceram Int. 2022;48(1):832. https://doi.org/10.1016/j.ceramint.2021.09.164.

    Article  CAS  Google Scholar 

  50. Wang Z, Xie P, Fan G, Zhang Z, Liu Y, Gu Q, Fan R. Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis. Ceram Int. 2020;46(7):9342. https://doi.org/10.1016/j.ceramint.2019.12.191.

    Article  CAS  Google Scholar 

  51. Feng S. Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials. Phys Rev Lett. 2012;108(19):193904. https://doi.org/10.1103/PhysRevLett.108.193904.

    Article  CAS  Google Scholar 

  52. Qu Y, Du Y, Fan G, Xin J, Liu Y, Xie P, You S, Zhang Z, Sun K, Fan R. Low-temperature sintering graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J Alloy Compd. 2019;771:699. https://doi.org/10.1016/j.jallcom.2018.09.049.

    Article  CAS  Google Scholar 

  53. Xia S, Shi Z, Sun K, Yin P, Dastan D, Liu Y, Cui H, Fan R. Achieving remarkable energy storage enhancement in polymer dielectrics via constructing an ultrathin Coulomb blockade layer of gold nanoparticles. Mater Horiz. 2023. https://doi.org/10.1039/D3MH00084B.

    Article  Google Scholar 

  54. Sun L, Shi Z, He B, Wang H, Liu S, Huang M, Shi J, Dastan D, Wang H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater. 2021;31(35):2100280. https://doi.org/10.1002/adfm.202100280.

    Article  CAS  Google Scholar 

  55. Yepes C, Maci S, Tretyakov S, Martini E. On the role of spatial dispersion in boundary conditions for perfect non-specular reflection. EPJ Appl Metamaterials. 2022;9:17. https://doi.org/10.1051/epjam/2022015.

    Article  Google Scholar 

  56. Shastri K, Monticone F. Bandwidth bounds for wide-field-of-view dispersion-engineered achromatic metalenses. EPJ Appl Metamaterials. 2022. https://doi.org/10.48550/arXiv.2204.09154.

    Article  Google Scholar 

  57. Patient D, Horsley S. Reflectionless anisotropic multilayers for both polarisations at grazing incidence. EPJ Appl Metamaterials. 2022;9:15. https://doi.org/10.1051/epjam/2022014.

    Article  Google Scholar 

  58. Lu Y, Tang W, Cui T. Multi-layer transmission line of spoof surface plasmon polaritons. EPJ Appl Metamaterials. 2022;9:7. https://doi.org/10.1051/epjam/2022010.

    Article  Google Scholar 

  59. Fan G, Wang Z, Ren H, Liu Y, Fan R. Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scripta Mater. 2021;190:1. https://doi.org/10.1016/j.scriptamat.2020.08.027.

    Article  CAS  Google Scholar 

  60. Xie P, Zhang Z, Liu K, Qian L, Dang F, Liu Y, Fan R, Wang X, Dou S. C/SiO2 meta-composite: overcoming the λ/a relationship limitation in metamaterials. Carbon. 2017;125:1. https://doi.org/10.1016/j.carbon.2017.09.021.

    Article  CAS  Google Scholar 

  61. Liu M, Ren Y, Yu Q, Mi J, Hao L. Research progress of middle and high temperature proton conductor electrolyte ceramics. Chin J Rare Met. 2022;46(09):1244. https://doi.org/10.13373/j.cnki.cjrm.XY20050015.

    Article  Google Scholar 

  62. Wang P, Zhang J, Zhang Y, Qin F, Yang M, Chen H. Structure and properties of silicon oxycarbide porous ceramics with different catalysts. Chin J Rare Met. 2022;46(12):1573. https://doi.org/10.13373/j.cnki.cjrm.XY21020007.

    Article  Google Scholar 

  63. Zhang L, Huo C, Ma Y, Ma H, Lin Q, Feng D. Surface dislocation corrosion in Germanium monocrystal wafer of low dislocation density. Chin J Rare Met. 2022;46(8):1118. https://doi.org/10.13373/j.cnki.cjrm.XY20070007.

    Article  Google Scholar 

  64. Qu YP, Xie PT, Zhou YL, Ding JF, Chen YL, Gong X, Yang JL, Peng Q, Qi XS. Graphitized-MWCNT/CaCu3Ti4O12 metacomposites for tunable ε′-negative and ε′-near-zero response with enhanced electromagnetic shielding. Ceram Int. 2023;49:37407. https://doi.org/10.1016/j.ceramint.2023.09.066.

    Article  CAS  Google Scholar 

  65. Qu YP, Peng Q, Zhou YL, Manshaii F, Wang SL, Wang KD, Xie PT, Qi XS, Sun K. Fine-tunable ε′-negative response derived from low-frequency plasma oscillation in graphene/polyaniline metacomposites. Compos Commun. 2023;44: https://doi.org/10.1016/j.coco.2023.101750.

    Article  Google Scholar 

  66. Leng Z, Yang ZY, Tang XX, Helal M, Qu YP, Xie PT, El-Bahy Z, Meng SW, Ibrahim M, Yu CY, Algadi H, Liu C, Liu Y. Progress in percolative composites with negative permittivity for applications in electromagnetic interference shielding and capacitors. Adv Compos Hybrid Mater. 2023;6:195. https://doi.org/10.1007/s42114-023-00778-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52205593), the Fund of Natural Science Special (Special Post) Research Foundation of Guizhou University (No. 2023-032) and the Platform of Science and Technology and Talent Team Plan of Guizhou Province (No. GCC[2023]007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Lei Zhou, Yao Liu or Xiao-Si Qi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1344 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, YP., Zhou, YL., Luo, Y. et al. Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 43, 796–809 (2024). https://doi.org/10.1007/s12598-023-02510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02510-x

Keywords

Navigation