Skip to main content
Log in

Molecular dynamics study on microscale residual stress of graphene/aluminum nanocomposites by selective laser sintering

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The fabrication of graphene/metal matrix composites by selective laser sintering (SLS) technique has been extensively studied; however, the complex microstructure and residual stress limit their further applications. Herein, the sintering behavior of graphene/aluminum (Gr/Al) composites is studied using an all-atom model. The effect of sintering temperature and Al particle size on densification is investigated based on molecular dynamics (MD) simulations. The results reveal that the higher sintering temperature and smaller particle size are conducive to the improved sintering quality of Gr/Al composites. Then, a large-scale laser sintering model of Gr/Al composites is established and the sintering process is simulated using optimal sintering parameters. The evolution of microstructure and residual stress of Gr/Al composites during SLS are investigated in detail. The results indicate that the epitaxial growth of Al grains plays a dominant role in grain growth, promoting the formation of nanoscale single crystals. Therefore, stress concentration occurs at the voids, microcracks and Gr/Al interfaces, but not at the stacking faults. What’s more, the distribution characteristics of residual stress components in Gr/Al composites are affected by Gr/Al interaction.

Graphical abstract

摘要

利用选择性激光烧结 (SLS) 技术制造石墨烯/金属基复合材料已经被广泛研究, 然而复杂的微观结构和残余应力限制了复合材料进一步的应用. 本文使用全原子模型研究了石墨烯/铝 (Gr/Al) 复合材料的烧结行为. 基于分子动力学 (MD) 模拟, 研究了烧结温度和铝颗粒大小对致密化的影响. 结果表明, 较高的烧结温度和较小的颗粒尺寸有利于提高Gr/Al复合材料的烧结质量. 建立了Gr/Al复合材料的大规模激光烧结模型, 并使用最佳烧结参数对烧结过程进行了模拟. 详细研究了 SLS 过程中 Gr/Al 复合材料的微观结构和残余应力的演变. 结果表明, 铝晶粒的外延生长在晶粒生长中起主导作用, 促进了纳米级单晶的形成. 因此, 应力集中发生在空隙, 微裂纹和Gr/Al界面, 而不是在堆积断层. 更重要的是, Gr/Al 复合材料中残余应力成分的分布特征受到Gr/Al相互作用的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lin T, Cao C, Sokoluk M, Jiang L, Wang X, Schoenung JM, Lavernia EJ, Li X. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat Commun. 2019;10(1):4124. https://doi.org/10.1038/s41467-019-120472.

    Article  Google Scholar 

  2. Chen B, Xi X, Tan C, Song X. Recent progress in laser additive manufacturing of aluminum matrix composites. Clin Microbiol Newsl. 2015;37(4):33. https://doi.org/10.1016/j.coche.2020.01.005.

    Article  CAS  Google Scholar 

  3. Yang Z, Chabi S, Xia Y, Zhu Y. Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog Nat Sci Mater Int. 2015;25(6):554. https://doi.org/10.1016/j.pnsc.2015.11.010.

    Article  CAS  Google Scholar 

  4. Chen Z, Hui H, Li C, Chen F, Mei X, Ma Y, Li J, Choi S, Mei Q. GNPs/Al nanocomposites with high strength and ductility and electrical conductivity fabricated by accumulative roll-compositing. Rare Met. 2021;40(9):2593. https://doi.org/10.1007/s12598-020-01695-9.

    Article  CAS  Google Scholar 

  5. Reddy KS, Sreedhar D, Kumar KD, Kumar GP. Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nano composites. Mater Today Proc. 2015;2(4–5):1270. https://doi.org/10.1016/j.matpr.2015.07.042.

    Article  CAS  Google Scholar 

  6. Yang W, Zhao Q, Xin L, Qiao J, Zou J, Shao P, Yu Z, Zhang Q, Wu G. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. J Alloys Compd. 2018;732:748. https://doi.org/10.1016/j.jallcom.2017.10.283.

    Article  CAS  Google Scholar 

  7. Jeon C, Jeong Y, Seo J, Tien HN, Hong S, Yum Y, Hur S, Lee K. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int J Precis Eng Man. 2014;15(6):1235. https://doi.org/10.1007/s12541-014-0462-2.

    Article  Google Scholar 

  8. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371. https://doi.org/10.1016/j.actamat.2016.07.019.

    Article  CAS  Google Scholar 

  9. Buchanan C, Gardner L. Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct. 2019;180:332. https://doi.org/10.1016/j.engstruct.2018.11.045.

    Article  Google Scholar 

  10. Huang J, Qi L, Luo J, Zhao L, Yi H. Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field. Int J Mach Tool Manu. 2020;148:103474. https://doi.org/10.1016/j.ijmachtools.2019.103474.

    Article  Google Scholar 

  11. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. Oak Ridge National Lab. ORNL ORTU. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315. https://doi.org/10.1080/09506608.2015.1116649.

    Article  CAS  Google Scholar 

  12. Guo H, Lv R, Bai S. Recent advances on 3D printing graphene-based composites. Nano Mater Sci. 2019;1(2):101. https://doi.org/10.1016/j.nanoms.2019.03.003.

    Article  Google Scholar 

  13. Hu Z, Tong G, Nian Q, Xu R, Saei M, Chen F, Chen C, Zhang M, Guo H, Xu J. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos B Eng. 2016;93:352. https://doi.org/10.1016/j.compositesb.2016.03.043.

    Article  CAS  Google Scholar 

  14. Lin D, Richard Liu C, Cheng GJ. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: microstructure and mechanical property enhancement. Acta Mater. 2014;80:183. https://doi.org/10.1016/j.actamat.2014.07.038.

    Article  CAS  Google Scholar 

  15. Hu Z, Tong G, Lin D, Nian Q, Shao J, Hu Y, Saeib M, Jin S, Cheng GJ. Laser sintered graphene nickel nanocomposites. J Mater Process Tech. 2016;231:143. https://doi.org/10.1016/j.jmatprotec.2015.12.022.

    Article  CAS  Google Scholar 

  16. Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 2009;9(11):3867. https://doi.org/10.1021/nl9020733.

    Article  CAS  Google Scholar 

  17. Cooke S, Ahmadi K, Willerth S, Herring R. Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process. 2020;57:978. https://doi.org/10.1016/j.jmapro.2020.07.025.

    Article  Google Scholar 

  18. Lu Y, Wu S, Gan Y, Huang T, Yang C, Junjie L, Lin J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol. 2015;75:197. https://doi.org/10.1016/j.optlastec.2015.07.009.

    Article  CAS  Google Scholar 

  19. Lin D, Motlag M, Saei M, Jin S, Rahimi RM, Bahr D, Cheng GJ. Shock engineering the additive manufactured graphene-metal nanocomposite with high density nanotwins and dislocations for ultra-stable mechanical properties. Acta Mater. 2018;150:360. https://doi.org/10.1016/j.actamat.2018.03.013.

    Article  CAS  Google Scholar 

  20. Fang Z, Wu Z, Huang C, Wu C. Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt Laser Technol. 2020;129:106283. https://doi.org/10.1016/j.optlastec.2020.106283.

    Article  CAS  Google Scholar 

  21. Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf. 2016;12:240. https://doi.org/10.1016/j.addma.2016.05.007.

    Article  Google Scholar 

  22. Panda BK, Sahoo S. Numerical simulation of residual stress in laser based additive manufacturing process. IOP conference series. Mater Sci Eng. 2018;338:12030. https://doi.org/10.1088/1757-899X/338/1/012030.

    Article  Google Scholar 

  23. Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci. 2003;38(1):35. https://doi.org/10.1023/A:1021153513925.

    Article  CAS  Google Scholar 

  24. Kemerling B, Lippold JC, Fancher CM, Bunn J. Oak Ridge National Lab. ORNL ORTU. Residual stress evaluation of components produced via direct metal laser sintering. Weld World. 2018;62(3):663. https://doi.org/10.1007/s40194-018-0572-z.

    Article  Google Scholar 

  25. Zhu JD, Liu X, Zhou XW, Yang QS. Strengthening effect of graphene-edge dislocation interaction in graphene reinforced copper matrix composites. Comput Mater Sci. 2021;188(16):110. https://doi.org/10.1016/j.commatsci.2020.110179.

    Article  CAS  Google Scholar 

  26. Zhang J, Xu Q, Gao L, Ma T, Qiu M, Hu Y, Wang H, Luo J. A molecular dynamics study of lubricating mechanism of graphene nanoflakes embedded in Cu-based nanocomposite. Appl Surf Sci. 2020;511:145620. https://doi.org/10.1016/j.apsusc.2020.145620.

    Article  CAS  Google Scholar 

  27. Peng W, Sun K, Abdullah R, Zhang M, Chen J, Shi J. Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: a molecular dynamics simulation. Appl Surf Sci. 2019;487:22. https://doi.org/10.1016/j.apsusc.2019.04.256.

    Article  CAS  Google Scholar 

  28. Zhu JD, Liu X, Wang ZY, Yang QS. Wrinkles-assisted nanocrystalline formation and mechanical properties of wrinkled graphene/aluminum matrix composites. Model Simul Mater Sci Eng. 2021;29(5):055017. https://doi.org/10.1088/1361-651X/ac03a5.

    Article  CAS  Google Scholar 

  29. He H, Rong Y, Zhang L. Molecular dynamics studies on the sintering and mechanical behaviors of graphene nanoplatelet reinforced aluminum matrix composites. Model Simul Mater Sci. 2019;27(6):65006. https://doi.org/10.1088/1361-651X/ab2095.

    Article  CAS  Google Scholar 

  30. Subramaniyan AK, Sun CT. Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct. 2008;45(14–15):4340. https://doi.org/10.1016/j.ijsolstr.2008.03.016.

    Article  Google Scholar 

  31. Tsai DH. The virial theorem and stress calculation in molecular dynamics. J Chem Phy. 1979;70(3):1375. https://doi.org/10.1063/1.437577.

    Article  CAS  Google Scholar 

  32. Zhou XH, Liu X, Lei J, Yang QS. Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites. Comp Mater Sci. 2020;172:109342. https://doi.org/10.1016/j.commatsci.2019.109342.

    Article  CAS  Google Scholar 

  33. Kim WJ, Lee TJ, Han SH. Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon. 2014;69:55. https://doi.org/10.1016/j.carbon.2013.11.058.

    Article  CAS  Google Scholar 

  34. Zhou XH, Liu X, Shang JJ, Yang QS. Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites. Mech Mater. 2020;148:103530. https://doi.org/10.1016/j.mechmat.2020.103530.

    Article  Google Scholar 

  35. Bhouri M, Mzali F, Berdin C, Di Paola F. Numerical homogenization and experimental study of the influence of graphite content and voids on the coefficients of thermal expansion of 2017 aluminium matrix composites. Mater Today Commun. 2021;26:101638. https://doi.org/10.1016/j.mtcomm.2020.101638.

    Article  CAS  Google Scholar 

  36. Mag-isa AE, Kim S, Kim J, Oh C. Variation of thermal expansion coefficient of freestanding multilayer pristine graphene with temperature and number of layers. Mater Today Commun. 2020;25:101387. https://doi.org/10.1016/j.mtcomm.2020.101387.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11872079) and the General Program of Science and Technology Development Project from Beijing Municipal Education Commission (No. KM201810005002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, XN., Liu, X. Molecular dynamics study on microscale residual stress of graphene/aluminum nanocomposites by selective laser sintering. Rare Met. 41, 3677–3683 (2022). https://doi.org/10.1007/s12598-022-02079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02079-x

Navigation