Skip to main content
Log in

Dynamic manipulation of multimodal emission in Er3+-activated non-core–shell structure for optical thermometry and information security

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Regulating luminescent dynamics of lanthanide-based luminescent materials via external stimuli is of great significance in the fields of optical thermometry and high-level anti-counterfeiting. However, it is still a huge challenge to realize multimodal emissions with tunable color outputs from a single activator in simple structures via smart dynamic control of photon transition processes. Herein, we present a mechanistic strategy to achieve multimodal luminescence of Er3+ activators with color-switchable outputs in a non-core–shell host. Under the control of excitation dynamics (λex = 980, 808, 1532, 377 nm), the population among the intermediate energy levels of Er3+ and the interaction between Er3+ and Yb3+ could be precisely modulated through energy transfer and migration processes, leading to the generation of color-tunable multimodal luminescence upon diverse excitation modes (non-steady-state, single-/dual-wavelength steady, thermal activation). Inspired by its special luminescent performance, the as-obtained material exhibits great potential in noncontact thermometry, multimodal anti-counterfeiting, and high-capacity information encryption by performing a series of proof‐of‐concept experiments. Our findings might provide a conceptual model to modulate the luminescent dynamics in a simple-structured system for the generation of color-adjustable multimodal emissions, which is convenient for the development of advanced luminescent materials toward versatile cutting-edge applications.

Graphical abstract

摘要

通过外部刺激调控镧系发光材料的发光动力学在光学测温和高级防伪领域具有重要意义。然而,通过对光子跃迁过程的动态调控,在简单结构体系中实现单个激活离子的智能光色输出仍然是一个巨大的挑战。因此,本文提出了一种简单的调控策略,在非核壳体系中实现Er3+离子的多模式发光现象。在不同光源激发模式下(λex=980, 808, 1532, 377 nm),通过控制Er3+离子的中间能级之间的布居以及Er3+与Yb3+之间的相互作用实现能量转移和迁移过程的精准调控,获得不同发光模式下(非稳态、单/双波长稳定、热激活)的多色发光现象。一系列概念验证性实验表明,所制备的材料体系在非接触光学测温、多模式荧光防伪和高容量信息加密等方面显示出巨大的应用潜力。本文的研究提出了一种在简单体系中实现镧系发光智能输出和性能调控的概念模型,为后续的稀土发光调控研究提有益的借鉴,也有利于开发高端先进的稀土发光材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-earth doping in nanostructured inorganic materials. Chem Rev. 2022;122(6):5519. https://doi.org/10.1021/acs.chemrev.1c00644.

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Liu H, Huang S, Zhong SL. Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets. Rare Met. 2021;40(3):728. https://doi.org/10.1007/s12598-017-0914-9.

    Article  CAS  Google Scholar 

  3. Zhao JB, Wu LL. Yb3+- and Er3+-doped Y2O3 microcrystals for upconversion photoluminescence and energy transfer with enhancements of near-ultraviolet emission. Rare Met. 2021;40(1):123. https://doi.org/10.1007/s12598-019-01269-4.

    Article  MathSciNet  CAS  Google Scholar 

  4. Ding M, Cui S, Fang L, Lin Z, Lu C, Yang X. NIR-I-responsive single-band upconversion emission through energy migration in core-shell-shell nanostructures. Angew Chem Int Ed. 2022;61: e202203631. https://doi.org/10.1002/anie.202203631.

    Article  ADS  CAS  Google Scholar 

  5. Guo H, Li J, Zou XR, Wang HS, Kang A, Zhou H, Li MJ, Zhao XY. Fabrication of GO-TiO2/(Ca,Y)F2:Tm,Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Met. 2022;41(2): 650. https://doi.org/10.1007/s12598-021-01831-z.

    Article  CAS  Google Scholar 

  6. Dhankhar P, Devi R, Devi S, Chahar S, Dalal M, Taxak V, Khatkar S, Boora P. Synthesis and photoluminescent performance of novel europium (III) carboxylates with heterocyclic ancillary ligands. Rare Met. 2022;41(4):1342. https://doi.org/10.1007/s12598-019-01261-y.

    Article  CAS  Google Scholar 

  7. Wang Y, Zheng K, Song S, Fan D, Zhang H, Liu X. Remote manipulation of upconversion luminescence. Chem Soc Rev. 2018;47(17):6473. https://doi.org/10.1039/C8CS00124C.

    Article  CAS  PubMed  Google Scholar 

  8. Tu L, Liu X, Wu F, Zhang H. Excitation energy migration dynamics in upconversion nanomaterials. Chem Soc Rev. 2015;44(6):1331. https://doi.org/10.1039/C4CS00168K.

    Article  CAS  PubMed  Google Scholar 

  9. Wang LM, Liu WY, Hu ML, Yao JS, Wang P, Liu JH, He M, Gao Y, Li ZX. Rare earth-based MOF@mesoporous silica nanoplatform for long-term and luminescence trackable chemotherapy. Rare Met. 2022;41(8):2701. https://doi.org/10.1007/s12598-022-01978-3.

    Article  CAS  Google Scholar 

  10. Sun T, Li Y, Ho WL, Zhu Q, Chen X, Jin L, Zhu H, Huang B, Lin J, Little BE, Chu ST, Wang F. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nat Commun. 2019;10(1):1811. https://doi.org/10.1038/s41467-019-09850-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Xu HL, Wang L, Zhong SL. Microwave-hydrothermal synthesis, characterization and upconversion luminescence of rice-like Gd(OH)3 nanorods. Rare Met. 2022;41(12):4273. https://doi.org/10.1007/s12598-016-0816-2.

    Article  Google Scholar 

  12. Liu X, Yan CH, Capobianco JA. Photon upconversion nanomaterials. Chem Soc Rev. 2015;44(6):1299. https://doi.org/10.1039/C5CS90009C.

    Article  CAS  PubMed  Google Scholar 

  13. Yang D, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015;44(6):1416. https://doi.org/10.1039/C4CS00155A.

    Article  CAS  PubMed  Google Scholar 

  14. Dong H, Sun LD, Yan CH. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev. 2015;44(6):1608. https://doi.org/10.1039/C4CS00188E.

    Article  CAS  PubMed  Google Scholar 

  15. Dong H, Sun LD, Yan CH. Basic understanding of the lanthanide related upconversion emissions. Nanoscale. 2013;5(13):5703. https://doi.org/10.1039/C3NR34069D.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen D, Wang Y, Hong M. Lanthanide nanomaterials with photon management characteristics for photovoltaic application. Nano Energy. 2012;1(1):73. https://doi.org/10.1016/j.nanoen.2011.10.004.

    Article  CAS  Google Scholar 

  17. Liu M, Zheng G, Yang W, Tian D, Zhong Q, Huang L, Xie J. Doping induced morphology, crystal structure, and upconversion luminescence evolution: from Na3ScF6:Yb/Er/Y to NaYF4:Yb/Er/Sc nanocrystals. Rare Met. 2023;42:1018. https://doi.org/10.1007/s12598-022-02159-y.

    Article  CAS  Google Scholar 

  18. Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C, Xu Z. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4: Yb3+/Er3+ microcrystals by simply tuning the KF dosage. Sci Rep. 2015;5(1):1. https://doi.org/10.1038/srep12745.

    Article  CAS  Google Scholar 

  19. Ding M, Lu C, Ni Y, Xu Z. Rapid microwave-assisted flux growth of pure β-NaYF4: Yb3+, Ln3+ (Ln= Er, Tm, Ho) microrods with multicolor upconversion luminescence. Chem Eng J. 2014;241:477. https://doi.org/10.1016/j.cej.2013.10.045.

    Article  CAS  Google Scholar 

  20. Gao D, Zhang X, Gao W. Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl Mater Interfaces. 2013;5(19):9732. https://doi.org/10.1021/am402843h.

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, Li Z, Li Q, Yuan J, Tu L, Ning L, Zhang H. Internal OH− induced cascade quenching of upconversion luminescence in NaYF4: YbEr nanocrystals. Light Sci Appl. 2021;10(1):1. https://doi.org/10.1038/s41377-021-00550-5.

    Article  CAS  Google Scholar 

  22. Ding M, Chen D, Ma D, Dai J, Li Y, Ji Z. Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures. J Mater Chem C. 2016;4(13):2432. https://doi.org/10.1039/C6TC00163G.

    Article  CAS  Google Scholar 

  23. Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv Mater. 2010;22(30):3266. https://doi.org/10.1002/adma.201000128.

    Article  CAS  PubMed  Google Scholar 

  24. Ding M, Dong B, Lu Y, Yang X, Yuan Y, Bai W, Wu S, Ji Z, Lu C, Zhang K. Energy manipulation in lanthanide-doped core–shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting. Adv Mater. 2020;32(45):2002121. https://doi.org/10.1002/adma.202002121.

    Article  CAS  Google Scholar 

  25. Huang H, Chen J, Liu Y, Lin J, Wang S, Huang F, Chen D. Lanthanide-doped core@ multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting. Small. 2020;16(19):2000708. https://doi.org/10.1002/smll.202000708.

    Article  CAS  Google Scholar 

  26. Liao J, Wang M, Lin F, Han Z, Fu B, Tu D, Chen X, Qiu B, Wen H-R. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat Commun. 2022;13(1):2090. https://doi.org/10.1038/s41467-022-29784-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu X, Zhang X, Hu C, Zheng Y, Lei B, Liu Y, Zhuang J. Construction of NaYF4: Yb, Er (Tm)@ CDs composites for enhancing red and NIR upconversion emission. J Mater Chem C. 2019;7(21):6231. https://doi.org/10.1039/C9TC01346F.

    Article  CAS  Google Scholar 

  28. Xiao H, Liu B, Qiu L, Li G, Zhang G, Huang D, Zhao Y, Yang C, Jiang F, Dang P. Core-shell structured upconversion/lead-free perovskite nanoparticles for anticounterfeiting applications. Angew Chem Int Ed. 2022;61(8): e202115136. https://doi.org/10.1002/anie.202115136.

    Article  CAS  Google Scholar 

  29. Liu J, Rijckaert H, Zeng M, Haustraete K, Laforce B, Vincze L, Van Driessche I, Kaczmarek AM, Van Deun R. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv Func Mater. 2018;28(17):1707365. https://doi.org/10.1002/adfm.201707365.

    Article  CAS  Google Scholar 

  30. An Z, Huang J, Yan L, He L, Zhou B. Multichannel control of persl/upconversion/down-shifting luminescence in a single core-shell nanoparticle for information encryption. J Phys Chem Lett. 2022;13(39):9007. https://doi.org/10.1021/acs.jpclett.2c02396.

    Article  CAS  PubMed  Google Scholar 

  31. Song Y, Lu M, Mandl GA, Xie Y, Sun G, Chen J, Liu X, Capobianco JA, Sun L. Energy migration control of multimodal emissions in an Er3+-doped nanostructure for information encryption and deep-learning decoding. Angew Chem Int Ed. 2021;133(44):23983. https://doi.org/10.1002/anie.202109532.

    Article  ADS  CAS  Google Scholar 

  32. Ding M, Chen D, Wan Z, Zhou Y, Zhong J, Xi J, Ji Z. Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture. J Mater Chem C. 2015;3(21):5372. https://doi.org/10.1039/C5TC00881F.

    Article  CAS  Google Scholar 

  33. Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed. 2010;49(41):7456. https://doi.org/10.1002/anie.201003959.

    Article  CAS  Google Scholar 

  34. Li C, Yang J, Quan Z, Yang P, Kong D, Lin J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chem Mater. 2007;19(20):4933. https://doi.org/10.1021/cm071668g.

    Article  CAS  Google Scholar 

  35. Gao D, Zhang X, Zheng H, Gao W, He E. Yb3+/Er3+ codoped β-NaYF4 microrods: synthesis and tuning of multicolor upconversion. J Alloy Compd. 2013;554:395. https://doi.org/10.1016/j.jallcom.2012.12.010.

    Article  CAS  Google Scholar 

  36. Ding M, Lu C, Cao L, Ni Y, Xu Z. Controllable synthesis, formation mechanism and upconversion luminescence of β-NaYF4:Yb3+/Er3+ microcrystals by hydrothermal process. CrystEngComm. 2013;15(41):8366. https://doi.org/10.1039/C3CE41427B.

    Article  CAS  Google Scholar 

  37. Ding M, Yin S, Ni Y, Lu C, Chen D, Zhong J, Ji Z, Xu Z. Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence. Ceram Int. 2015;41(6):7411. https://doi.org/10.1016/j.ceramint.2015.02.054.

    Article  CAS  Google Scholar 

  38. Ding M, Lu C, Cao L, Song J, Ni Y, Xu Z. Facile synthesis of β-NaYF4:Ln3+ (Ln= Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down-and up-conversion luminescence. J Mater Sci. 2013;48(14):4989. https://doi.org/10.1007/s10853-013-7285-x.

    Article  ADS  CAS  Google Scholar 

  39. Shi F, Wang J, Zhai X, Zhao D, Qin W. Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm. 2011;13(11):3782. https://doi.org/10.1039/C1CE05092C.

    Article  CAS  Google Scholar 

  40. Han S, Deng R, Xie X, Liu X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed. 2014;53(44):11702. https://doi.org/10.1002/anie.201403408.

    Article  CAS  Google Scholar 

  41. Xu H, Han S, Deng R, Su Q, Wei Y, Tang Y, Qin X, Liu X. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nat Photonics. 2021;15(10):732. https://doi.org/10.1038/s41566-021-00862-3.

    Article  ADS  CAS  Google Scholar 

  42. Yan L, Huang J, An Z, Zhang Q, Zhou B. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett. 2022;22(17):7042. https://doi.org/10.1021/acs.nanolett.2c01931.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhang G, Dang P, Lian H, Xiao H, Cheng Z, Lin J. Er3+/Yb3+-based halide double perovskites with highly efficient and wide ranging antithermal quenching photoluminescence behavior for light-emitting diode applications. Laser Photonics Rev. 2022;16(8):2200078. https://doi.org/10.1002/lpor.202200078.

    Article  ADS  CAS  Google Scholar 

  44. Song F, Han L, Tan H, Su J, Yang J, Tian JG, Zhang GY, Cheng ZX, Chen HC. Spectral performance and intensive green upconversion luminescence in Er3+/Yb3+-codoped NaY(WO4)2 crystal. Opt Commun. 2006;259(1):179. https://doi.org/10.1016/j.optcom.2005.08.049.

    Article  ADS  CAS  Google Scholar 

  45. Cheng X, Pan Y, Yuan Z, Wang X, Su W, Yin L, Xie X, Huang L. Er3+ sensitized photon upconversion nanocrystals. Adv Func Mater. 2018;28(22):1800208. https://doi.org/10.1002/adfm.201800208.

    Article  CAS  Google Scholar 

  46. Chen Q, Xie X, Huang B, Liang L, Han S, Yi Z, Wang Y, Li Y, Fan D, Huang L. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew Chem Int Ed. 2017;129(26):7713. https://doi.org/10.1002/anie.201703012.

    Article  ADS  CAS  Google Scholar 

  47. Liao J, Jin D, Chen C, Li Y, Zhou J. Helix shape power-dependent properties of single upconversion nanoparticles. J Phys Chem Lett. 2020;11(8):2883. https://doi.org/10.1021/acs.jpclett.9b03838.

    Article  CAS  PubMed  Google Scholar 

  48. Yin X, Xu W, Zhu G, Ji Y, Xiao Q, Dong X, He M, Cao B, Zhou N, Luo X, Guo L, Dong B. Towards highly efficient NIR II response up-conversion phosphor enabled by long lifetimes of Er3+. Nat Commun. 2022;13(1):6549. https://doi.org/10.1038/s41467-022-34350-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Yan L, Liu S, Song N, Zhang Q, Zhou B. Dynamic control of orthogonal upconversion in migratory core–shell nanostructure toward information security. Adv Func Mater. 2021;31(14):2009796. https://doi.org/10.1002/adfm.202009796.

    Article  CAS  Google Scholar 

  50. Han Y, Gao C, Wei T, Zhang K, Jiang Z, Zhou J, Xu M, Yin L, Song F, Huang L. Modulating the rise and decay dynamics of upconversion luminescence through controlling excitations. Angew Chem Int Ed. 2022;134(45): e202212089. https://doi.org/10.1002/anie.202212089.

    Article  ADS  CAS  Google Scholar 

  51. Liu X, Chen ZH, Zhang H, Fan Y, Zhang F. Independent luminescent lifetime and intensity tuning of upconversion nanoparticles by gradient doping for multiplexed encoding. Angew Chem Int Ed. 2021;133(13):7117. https://doi.org/10.1002/anie.202015273.

    Article  ADS  CAS  Google Scholar 

  52. Ying W, Nie J, Fan X, Xu S, Gu J, Liu S. Dual-wavelength responsive broad range multicolor upconversion luminescence for high-capacity photonic barcodes. Adv Opt Mater. 2021;9(15):2100197. https://doi.org/10.1002/adom.202100197.

    Article  CAS  Google Scholar 

  53. Ying W, Fan X, Gu J, Xu S, Liu S. Oxyfluoride glass-ceramics for upconversion all-optical combinational logic gate operations. Cell Reports Phys Sci. 2022;3(5): 100871. https://doi.org/10.1016/j.xcrp.2022.100871.

    Article  CAS  Google Scholar 

  54. Suo H, Zhao X, Zhang Z, Li T, Goldys EM, Guo C. Constructing multiform morphologies of YF3:Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry. Chem Eng J. 2017;313:65. https://doi.org/10.1016/j.cej.2016.12.064.

    Article  CAS  Google Scholar 

  55. Huang F, Yang T, Wang S, Lin L, Hu T, Chen D. Temperature sensitive cross relaxation between Er3+ ions in laminated hosts: a novel mechanism for thermochromic upconversion and high performance thermometry. J Mater Chem C. 2018;6(45):12364. https://doi.org/10.1039/C8TC04733B.

    Article  CAS  Google Scholar 

  56. Jiang Y, Tong Y, Chen S, Zhang W, Hu F, Wei R, Guo H. A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6: Er3+, Yb3+ phosphors. Chem Eng J. 2021;413: 127470. https://doi.org/10.1016/j.cej.2020.127470.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20211280), the National Natural Science Foundation of China (No. 51702074) and Science Fund for Distinguished Young Scholars, Nanjing Forestry University. The authors would also like to thank the Advanced Analysis & Testing Center of Nanjing Forestry University for material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Ye Ding or Xiao-Fei Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7609 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lin, ZX., Shi, YB. et al. Dynamic manipulation of multimodal emission in Er3+-activated non-core–shell structure for optical thermometry and information security. Rare Met. 43, 1702–1712 (2024). https://doi.org/10.1007/s12598-023-02492-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02492-w

Keywords

Navigation