Skip to main content
Log in

Facile synthesis of β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down- and up-conversion luminescence

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm) hexagonal microrods have been successfully synthesized through a facile molten salt method without any surfactant. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. It is found that at a preferred reaction temperature of 400 °C, the structure of β-NaYF4 can gradually transform from microtubes to microrods as reaction time extends from 0.5 to 4 h. Furthermore, as the molar ratio of NaF:RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+) increased, the phase of sample transforms from YF3 into NaYF4. Under the excitation of 395 nm ultraviolet light, β-NaYF4:5 %Eu3+ shows the emission lines of Eu3+ corresponding to 5D0-3 → 7F J (J = 1–4) transitions from 400 to 700 nm, resulting in red down-conversion (DC) light emission. When doped with 5 % Tb3+ ions, the strong DC fluorescence corresponding to 5D4 → 7F J (J = 6, 5, 4, 3) transitions with 5D4 → 7F J (green emission at 544 nm) being the most prominent group that has been observed. Moreover, upon 980 nm laser diode excitation, the Yb3+/Er3+- and Yb3+,Tm3+- co-doped β-NaYF4 samples exhibit bright yellow and blue upconversion (UC) luminescence, respectively, by two- or three-photon UC process. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kramer KW, Biner D, Frei G, Gudel HU, Hehlen MP, Luthi SR (2004) Chem Mater 16:1244

    Article  Google Scholar 

  2. Zeng JH, Li ZH, Su J, Wang LY, Yan RO, Li YD (2006) Nanotechnology 17:3549

    Article  CAS  Google Scholar 

  3. Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Nano Lett 4:2191

    Article  CAS  Google Scholar 

  4. Shalav A, Richards BS, Trupke T, Kramer KW, Gudel HU (2005) Appl Phys Lett 86:013505

    Article  Google Scholar 

  5. Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M (2011) Opt Express 19:1749

    Article  CAS  Google Scholar 

  6. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) Science 273:1185

    Article  CAS  Google Scholar 

  7. Walsh BM, Barnes NP, Petros M, Yu JR, Singh UN (2004) J Appl Phys 95:3255

    Article  CAS  Google Scholar 

  8. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH (2006) Nano Lett 6:169

    Article  CAS  Google Scholar 

  9. Chen F, Bu W, Zhang S, Liu X, Liu J, Xing H et al (2011) Adv Funct Mater 21:4285

    Article  CAS  Google Scholar 

  10. Xiao Q, Bu W, Ren Q, Zhang S, Xing H, Chen F et al (2012) Biomaterials 33:7530

    Article  CAS  Google Scholar 

  11. Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kramer KW, Reinhard C, Gudel HU (2005) Opt Mater 27:1111

    Article  CAS  Google Scholar 

  12. Suyver JF, Grimm J, van Veen MK, Biner D, Krämer KW, Güdel HU (2006) J Lumin 117:1

    Article  CAS  Google Scholar 

  13. Menyuk N, Dwight K, Pierce J (1972) Appl Phys Lett 21:159

    Article  CAS  Google Scholar 

  14. Li C, Quan Z, Yang J, Yang P, Lin J (2007) Inorg Chem 46:6329

    Article  CAS  Google Scholar 

  15. Heer S, Kömpe K, Güdel HU, Haase M (2004) Adv Mater 16:2102

    Article  CAS  Google Scholar 

  16. Cao C, Zhang X, Chen M, Qin W, Zhang J (2010) J Alloy Compd 505:6

    Article  CAS  Google Scholar 

  17. Wang Q, Tan MC, Zhuo R, Kumar GA, Riman RE (2010) J Nanosci Nanotechnol 10:1685

    Article  CAS  Google Scholar 

  18. Liu J-N, Bu W, Pan L-M, Zhang S, Chen F, Zhou L et al (2012) Biomaterials 33:7282

    Article  CAS  Google Scholar 

  19. Chen F, Bu W, Zhang S, Liu J, Fan W, Zhou L et al (2012) Adv Funct Mater. doi:10.1002/adfm.201201469

    Google Scholar 

  20. Guo J, Ma F, Gu S, Shi Y, Xie J (2012) J Alloy Compd 523:161

    Article  CAS  Google Scholar 

  21. Liang LF, Wu H, Hu HL, Wu MM, Su Q (2004) J Alloy Compd 368:94

    Article  CAS  Google Scholar 

  22. Zeng S, Ren G, Xu C (2011) J Alloy Compd 509:2540

    Article  CAS  Google Scholar 

  23. Teshima K, Lee S, Shikine N, Wakabayashi T, Yubuta K, Shishido T, Oishi S (2011) Cryst Growth Des 11:995

    Article  CAS  Google Scholar 

  24. Suzuki S, Teshima K, Wakabayashi T, Nishikiori H, Yubuta K, Shishido T, Oishi S (2011) Cryst Growth Des 11:4825

    Article  CAS  Google Scholar 

  25. Suzuki S, Teshima K, Wakabayashi T, Nishikiori H, Ishizaki T, Oishi S (2011) J Mater Chem 21:13847

    Article  CAS  Google Scholar 

  26. Zhang X, Yang P, Li C, Wang D, Xu J, Gai S, Lin J (2011) Chem Commun 47(44):12143

    Article  CAS  Google Scholar 

  27. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Adv Mater 17:2119

    Article  CAS  Google Scholar 

  28. Liang X, Wang X, Zhuang J, Peng Q, Li Y (2007) Adv Funct Mater 17:2757

    Article  CAS  Google Scholar 

  29. Zhang F, Wan Y, Yu T, Zhang F, Shi Y, Xie S, Li Y, Xu L, Tu B, Zhao D (2007) Angew Chem Int Ed 46:7976

    Article  CAS  Google Scholar 

  30. Mao Y, Park T-J, Zhang F, Zhou H, Wong SS (2007) Small 3:1122

    Article  CAS  Google Scholar 

  31. Cao C, Yang HK, Chung JW, Moon BK, Choi BC, Jeong JH, Kim KH (2011) J Am Ceram Soc 94:3405

    Article  CAS  Google Scholar 

  32. Boyer J-C, Cuccia LA, Capobianco JA (2007) Nano Lett 7:847

    Article  CAS  Google Scholar 

  33. Wang F, Liu X (2008) J Am Chem Soc 130:5642

    Article  CAS  Google Scholar 

  34. Ajayaghosh A, Varghese R, Mahesh S, Praveen VK (2006) Angew Chem Int Ed 45:7729

    Article  CAS  Google Scholar 

  35. Yi GS, Chow GM (2006) Adv Funct Mater 16:2324

    Article  CAS  Google Scholar 

  36. Ehlert O, Thomann R, Darbandi M, Nann T (2008) ACS Nano 2:120

    Article  CAS  Google Scholar 

  37. Auzel F (2003) Chem Rev 104:139

    Article  Google Scholar 

  38. Li C, Zhang C, Hou Z, Wang L, Quan Z, Lian H, Lin J (2009) J Phys Chem C 113:2332

    Article  CAS  Google Scholar 

  39. Niu N, Yang P, He F, Zhang X, Gai S, Li C, Lin J (2012) J Mater Chem 22:10889

    Article  CAS  Google Scholar 

  40. Tian Y, Jiao X, Zhang J, Sui N, Chen D, Hong G (2010) J Nanopart Res 12:161

    Article  CAS  Google Scholar 

  41. Wang L, Li Y (2006) Nano Lett 6:1645

    Article  Google Scholar 

  42. Cao C, Yang HK, Chung JW, Moon BK, Choi BC, Jeong JH, Kim KH (2011) Mater Res Bull 46:1553

    Article  CAS  Google Scholar 

  43. Tao F, Wang Z, Yao L, Cai W, Li X (2007) J Phys Chem C 111:3241

    Article  CAS  Google Scholar 

  44. Bovero E, van Veggel FCJM (2007) J Phys Chem C 111:4529

    Article  CAS  Google Scholar 

  45. DeShazer LG, Dieke GH (1963) J Chem Phys 38:2190

    Article  CAS  Google Scholar 

  46. Thomas KS, Singh S, Dieke GH (1963) J Chem Phys 38:2180

    Article  CAS  Google Scholar 

  47. Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA (2006) J Am Chem Soc 128:7444

    Article  CAS  Google Scholar 

  48. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) Nano Lett 8:3834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant No. 20901040/B0111), the Key University Science Research Project of Jiangsu Province (No.10KJA430016), the Innovation Foundation for Graduate Students of Jiangsu Province China (CXLX11_0355) and a project funded by the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Lu or Zhongzi Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, M., Lu, C., Cao, L. et al. Facile synthesis of β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down- and up-conversion luminescence. J Mater Sci 48, 4989–4998 (2013). https://doi.org/10.1007/s10853-013-7285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7285-x

Keywords

Navigation