Skip to main content
Log in

Regulating interfacial stability of SiOx anode with fluoride-abundant solid–electrolyte interphase by fluorine-functionalized additive

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon oxide (SiOx) has received remarkable attention as a next-generation battery material; however, the sudden decrease in the cycling retention constitutes a significant challenge in facilitating its application. Tris(2,2,2-trifluoroethyl) phosphite (TTFP), which can control parasitic reactions such as the pulverization of SiOx anode materials and electrolyte decomposition, has been proposed to improve the lifespan of the cell. The electrochemical reduction of TTFP results in solid-electrolyte interphase (SEI) layers that are mainly composed of LiF, which occur at a higher potential than the working potential of the SiOx anode and carbonate-based solvents. The electrolyte with TTFP exhibited a substantial improvement in cycling retention after 100 cycles, whereas the standard electrolyte showed acutely decreased retention. The thickness of the SiOx anode with TTFP also changed only slightly without any considerable delamination spots, whereas the SiOx anode without TTFP was prominently deformed by an enormous volume expansion with several internal cracks. The cycled SiOx anode with TTFP exhibited less increase in resistance after cycling than that in the absence of TTFP, in addition to fewer decomposition adducts in corresponding X-ray photoelectron spectroscopy (XPS) analyses between the cycled SiOx anodes. These results demonstrate that TTFP formed SEI layers at the SiOx interface, which substantially reduced the pulverization of the SiOx anode materials; in addition, electrolyte decomposition at the interface decreased, which led to improved cycling retention.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng H, Shapter JG, Li Y, Gao G. Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem. 2021;57:451. https://doi.org/10.1016/j.jechem.2020.08.056.

    Article  CAS  Google Scholar 

  2. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75. https://doi.org/10.1038/s41586-019-1682-5.

    Article  CAS  Google Scholar 

  3. Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev. 2020;121(3):1623. https://doi.org/10.1021/acs.chemrev.0c00767.

    Article  CAS  Google Scholar 

  4. Liang K, Zhao H, Li J, Huang X, Ren Y. High-performance Na3V2(PO4)2F3 cathode obtained by a three-in-one strategy for self-sodium compensation, interface modification, and crosslinked carbon coatings. Appl Surf Sci. 2023;615(1):156412. https://doi.org/10.1016/j.apsusc.2023.156412.

    Article  CAS  Google Scholar 

  5. Liang K, Zhao H, Li J, Huang X, Jia S, Chen W, Ren Y. Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Small. 2023;19(19):2207562. https://doi.org/10.1002/smll.202207562.

    Article  CAS  Google Scholar 

  6. Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry—a review and perspective. Energy Storage. 2021;36:186. https://doi.org/10.1016/j.ensm.2020.12.019.

    Article  Google Scholar 

  7. Zhan R, Wang X, Chen Z, Seh ZW, Wang L, Sun Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv Energy Mater. 2021;11(35):2101565. https://doi.org/10.1002/aenm.202101565.

    Article  CAS  Google Scholar 

  8. Eshetu GG, Figgemeier E. Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. Chemsuschem.2019;12(12):2515.https://doi.org/10.1002/cssc.201900209.

    Article  CAS  Google Scholar 

  9. Eshetu GG, Zhang H, Judez X, Adenusi H, Armand M, Passerini S, Figgemeier E. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun. 2021;12(1):5459. https://doi.org/10.1038/s41467-021-25334-8.

    Article  CAS  Google Scholar 

  10. Ren WF, Zhou Y, Li JT, Huang L, Sun SG. Si anode for next-generation lithium-ion battery. Curr Opin Electrochem. 2019;18:46. https://doi.org/10.1016/j.coelec.2019.09.006.

    Article  CAS  Google Scholar 

  11. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49(5):1569. https://doi.org/10.1039/C7CS00863E.

    Article  CAS  Google Scholar 

  12. Zhu G, Chao D, Xu W, Wu M, Zhang H. Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano. 2021;15(10):15567. https://doi.org/10.1021/acsnano.1c05898.

    Article  CAS  Google Scholar 

  13. Li P, Kim H, Myung ST, Sun YK. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 2021;35:550. https://doi.org/10.1016/j.ensm.2020.11.028.

    Article  Google Scholar 

  14. Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev. 2019;48(1):285. https://doi.org/10.1039/c8cs00441b.

    Article  CAS  Google Scholar 

  15. Sun L, Liu Y, Shao R, Wu J, Jiang R, Jin Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022;46:482. https://doi.org/10.1016/j.ensm.2022.01.042.

    Article  Google Scholar 

  16. Li G, Li JY, Yue FS, Xu Q, Zuo TT, Yin YX, Guo YG. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy. 2019;60:485. https://doi.org/10.1016/j.nanoen.2019.03.077.

    Article  CAS  Google Scholar 

  17. Nzabahimana J, Liu Z, Guo S, Wang L, Hu X. Top-down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: mechanical milling and etching. Chemsuschem. 2020;13(8):1923. https://doi.org/10.1002/cssc.201903155.

    Article  CAS  Google Scholar 

  18. Zhou X, Qi Z, Liu Q, Tian J, Liu M, Dong K, Lei Z. Research progress of silicon suboxide-based anodes for lithium-ion batteries. Front Mater. 2021;7:628233. https://doi.org/10.3389/fmats.2020.628233.

    Article  Google Scholar 

  19. Choi S, Jung DS, Choi JW. Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano lett. 2014;14(12):7120. https://doi.org/10.1021/nl503620z.

    Article  CAS  Google Scholar 

  20. Chen J, Zhao H, Li J, Qi Y, Liang K, Zhou L, Huang X, Ren Y. Piezoelectric-driven self-accelerated anion migration for SiOX-C/PbZr0.52Ti0.48O3 with durable lithium storage performance. Ceram Int. 2022;48(8):11257. https://doi.org/10.1016/j.ceramint.2021.12.346.

    Article  CAS  Google Scholar 

  21. Hu G, Yu R, Liu Z, Yu Q, Zhang Y, Chen Q, Wu J, Zhou L, Mai L. Surface oxidation layer-mediated conformal carbon coating on Si nanoparticles for enhanced lithium storage. ACS Appl Mater Interfaces. 2021;13(3):3991. https://doi.org/10.1021/acsami.0c19673.

    Article  CAS  Google Scholar 

  22. Entwistle J, Rennie A, Patwardhan S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J Mater Chem A. 2018;6(38):18329. https://doi.org/10.1039/C8TA06370B.

    Article  CAS  Google Scholar 

  23. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources. 2011;196(1):13. https://doi.org/10.1016/j.jpowsour.2010.07.020.

    Article  CAS  Google Scholar 

  24. An F, Zhao H, Zhou W, Ma Y, Li P. S-containing and Si-containing compounds as highly effective electrolyte additives for SiOx-based anodes/NCM811 cathodes in lithium ion cells. Sci Rep. 2019;9(1):14108. https://doi.org/10.1038/s41598-019-49568-1.

    Article  CAS  Google Scholar 

  25. Wetjen M, Pritzl D, Jung R, Solchenbach S, Ghadimi R, Gasteiger HA. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J Electrochem Soc.2017;164(12):A2840.https://doi.org/10.1149/2.1921712jes.

    Article  CAS  Google Scholar 

  26. Wang Z, Zhao H, Zhou B, Li J, Qi Y, Liang K, Zhao Q, Ding Z, Ren Y. In situ surface coating and oxygen vacancy dual strategy endowing a Li-rich Li1.2Mn0.55Ni0.11Co0.14O2 cathode with superior lithium storage performance. ACS Appl Energy Mater. 2022;6:387. https://doi.org/10.1021/acsaem.2c03301.

    Article  CAS  Google Scholar 

  27. Nulu A, Nulu V, Sohn KY. Si/SiOx Nanoparticles embedded in a conductive and durable carbon nanoflake matrix as an efficient anode for lithium-ion batteries. ChemElectroChem. 2020;7(19):4055. https://doi.org/10.1002/celc.202001130.

    Article  CAS  Google Scholar 

  28. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522. https://doi.org/10.1021/nn204476h.

    Article  CAS  Google Scholar 

  29. Park E, Yoo H, Lee J, Park MS, Kim YJ, Kim H. Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material. ACS Nano. 2015;9(7):7690. https://doi.org/10.1021/acsnano.5b03166.

    Article  CAS  Google Scholar 

  30. Huang LB, Li G, Lu ZY, Li JY, Zhao L, Zhang Y, Zhang XD, Jiang KC, Xu Q, Guo YG. Trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes. ACS Appl Mater Interfaces. 2021;13(21):24916. https://doi.org/10.1021/acsami.1c05379.

    Article  CAS  Google Scholar 

  31. Liu G, Jiao T, Cheng Y, Zhou K, Zou Y, Wang M, Yang Y, Zheng J. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive. ACS Appl Energy Mater. 2021;4(9):10323. https://doi.org/10.1021/acsaem.1c02265.

    Article  CAS  Google Scholar 

  32. Michan AL, Parimalam BS, Leskes M, Kerber RN, Yoon T, Grey CP, Lucht BL. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem Mater. 2016;28(22):8149. https://doi.org/10.1021/acs.chemmater.6b02282.

    Article  CAS  Google Scholar 

  33. Xu Z, Yang J, Li H, Nuli Y, Wang J. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J Mater Chem A. 2019;7(16):9432. https://doi.org/10.1039/C9TA01876J.

    Article  CAS  Google Scholar 

  34. Zhang Y, Li X, Sivonxay E, Wen J, Persson KA, Vaughey JT, Key B, Dogan F. Silicon anodes with improved calendar life enabled by multivalent additives. Adv Energy Mater. 2021;11(37):2101820. https://doi.org/10.1002/aenm.202101820.

    Article  CAS  Google Scholar 

  35. Rynearson L, Jayawardana C, Rodrigo N, Lucht BL. Improved SiGr/NCM523 cycling via triethyl phosphate-solubilized lithium nitrate electrolyte. J Phys Chem C. 2023;127(4):1758. https://doi.org/10.1021/acs.jpcc.2c08055.

    Article  CAS  Google Scholar 

  36. Liu H, Naylor AJ, Menon AS, Brant WR, Edström K, Younesi R. Understanding the roles of tris(trimethylsilyl)phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/silicon–graphite (Si–Gr) lithium-ion batteries. Adv Mater Interfaces. 2020;7(15):2000277. https://doi.org/10.1002/admi.202000277.

    Article  CAS  Google Scholar 

  37. Li C, Zhu W, Lao B, Huang X, Yin H, Yang Z, Wang H, Chen D, Xu Y. Lithium difluorophosphate as an effective additive for improving the initial coulombic efficiency of a silicon anode. ChemElectroChem. 2020;7(18):3743. https://doi.org/10.1002/celc.202000713.

    Article  CAS  Google Scholar 

  38. Sadeghi BA, Wölke C, Pfeiffer F, Baghernejad M, Winter M, Cekic-Laskovic I. Synergistic role of functional electrolyte additives containing phospholane-based derivative to address interphasial chemistry and phenomena in NMC811||Si-graphite cells. J Power Sources. 2023;557(15):232570. https://doi.org/10.1016/j.jpowsour.2022.232570.

    Article  CAS  Google Scholar 

  39. Haridas AK, Nguyen QA, Terlier T, Blaser R, Biswal SL. Investigating the compatibility of TTMSP and FEC electrolyte additives for LiNi0.5Mn0.3Co0.2O2 (NMC)–silicon lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(2):2662. https://doi.org/10.1021/acsami.0c19347.

    Article  CAS  Google Scholar 

  40. Pan H, Gu Y, Lyu T, Wang Z, Wang G, Zhang Y, Xue M, Fang S. Nonflammable electrolyte based on fluoroethylene carbonate for high-voltage LiCoO2/Si–graphite lithium-ion batteries. ACS Appl Energy Mater. 2023;6(3):1955. https://doi.org/10.1021/acsaem.2c03889.

    Article  CAS  Google Scholar 

  41. Cao Z, Zheng X, Qu Q, Huang Y, Zheng H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv Mater. 2021;33(38):2103178. https://doi.org/10.1002/adma.202103178.

    Article  CAS  Google Scholar 

  42. Yang HW, Kang WS, Kim SJ. A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiOx anode for Li-ion batteries. Electrochim Acta. 2022;412:140107. https://doi.org/10.1016/j.electacta.2022.140107.

    Article  CAS  Google Scholar 

  43. Guo Y, Ke FS. Combination of 3D conductive network and all-fluorinated electrolyte for high-performance microsized silicon anode. J Solid State Chem. 2023;318:123723. https://doi.org/10.1016/j.jssc.2022.123723.

    Article  CAS  Google Scholar 

  44. Chen J, Fan X, Li Q, Yang H, Khoshi MR, Xu Y, Hwang S, Chen L, Ji X, Yang C. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy. 2020;5(5):386. https://doi.org/10.1038/s41560-020-0601-1.

    Article  CAS  Google Scholar 

  45. Kim S, Park SO, Lee MY, Lee JA, Kristanto I, Lee TK, Hwang D, Kim J, Wi TU, Lee HW. Stable electrode–electrolyte interfaces constructed by fluorine-and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Mater. 2022;45:1. https://doi.org/10.1016/j.ensm.2021.10.031.

    Article  CAS  Google Scholar 

  46. Yoon T, Chapman N, Seo DM, Lucht BL. Lithium salt effects on silicon electrode performance and solid electrolyte interphase (SEI) structure, role of solution structure on SEI formation. J Electrochem Soc. 2017;164(9):A2082. https://doi.org/10.1149/2.1421709jes.

    Article  CAS  Google Scholar 

  47. Zhao R, Wang S, Liu D, Liu Y, Lv X, Zeng X, Li B. Effect of fluoroethylene carbonate on solid electrolyte interphase formation of the SiO/C anode observed by in situ atomic force microscopy. ACS Appl Energy Mater. 2021;4(1):492. https://doi.org/10.1021/acsaem.0c02399.

    Article  CAS  Google Scholar 

  48. Ito M, Hori K, Maeda K, Ki Y, Uematsu N, Matsuoka N. Optimized synthesis of cyclic fluorinated sulfonylimide lithium salts to suppress aluminum corrosion in lithium-ion batteries. J Fluor Chem. 2022;257:109975. https://doi.org/10.1016/j.jfluchem.2022.109975.

    Article  CAS  Google Scholar 

  49. Wang L, Luo Z, Xu H, Piao N, Chen Z, Tian G, He X. Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes. RSC Adv. 2019;9(71):41837. https://doi.org/10.1039/C9RA07824J.

    Article  CAS  Google Scholar 

  50. Lv L, Wang Y, Huang W, Wang Y, Zhu G, Zheng H. Effect of lithium salt type on silicon anode for lithium-ion batteries. Electrochim Acta. 2022;413:140159. https://doi.org/10.1016/j.electacta.2022.140159.

    Article  CAS  Google Scholar 

  51. Markevich E, Salitra G, Aurbach D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017;2(6):1337. https://doi.org/10.1021/acsenergylett.7b00163.

    Article  CAS  Google Scholar 

  52. Lin YM, Klavetter KC, Abel PR, Davy NC, Snider JL, Heller A, Mullins CB. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem Commun. 2012;48:7268. https://doi.org/10.1039/C2CC31712E.

    Article  CAS  Google Scholar 

  53. Malliakas CD, Leung K, Pupek KZ, Shkrob IA, Abraham DP. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries. Phys Chem Chem Phys. 2016;18(16):10846. https://doi.org/10.1039/C6CP01157H.

    Article  CAS  Google Scholar 

  54. Han JG, Lee JB, Cha A, Lee TK, Cho W, Chae S, Kang SJ, Kwak SK, Cho J, Hong SY. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ Sci. 2018;11(6):1552. https://doi.org/10.1039/C8EE00372F.

    Article  CAS  Google Scholar 

  55. Yoo DJ, Yang S, Kim KJ, Choi JW. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angew Chem Int Ed. 2020;59(35):14869. https://doi.org/10.1002/anie.202003663.

    Article  CAS  Google Scholar 

  56. Galvez-Aranda DE, Seminario JM. Simulations of a LiF solid electrolyte interphase cracking on silicon anodes using molecular dynamics. J Electrochem Soc. 2018;165(3):A717. https://doi.org/10.1149/2.0991803jes.

    Article  CAS  Google Scholar 

  57. Kim K, Ma H, Park S, Choi NS. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: promise and challenges. ACS Energy Lett. 2020;5(5):1537. https://doi.org/10.1021/acsenergylett.0c00468.

    Article  CAS  Google Scholar 

  58. Mackanic DG, Yan X, Zhang Q, Matsuhisa N, Yu Z, Jiang Y, Manika T, Lopez J, Yan H, Liu K. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat Commun. 2019;10(1):5384. https://doi.org/10.1038/s41467-019-13362-4.

    Article  CAS  Google Scholar 

  59. Han YK, Yoo J, Yim T. Why is tris (trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? J Mater Chem A. 2015;3(20):10900. https://doi.org/10.1039/C5TA01253H.

    Article  CAS  Google Scholar 

  60. Zhang S, Xu K, Jow T. Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources. 2003;113(1):166. https://doi.org/10.1016/S0378-7753(02)00537-2.

    Article  CAS  Google Scholar 

  61. Leroy S, Blanchard F, Dedryvère R, Martinez H, Carré B, Lemordant D, Gonbeau D. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal. 2005;37(10):773. https://doi.org/10.1002/sia.2072.

    Article  CAS  Google Scholar 

  62. Li Q, Liu X, Han X, Xiang Y, Zhong G, Wang J, Zheng B, Zhou J, Yang Y. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive. ACS Appl Mater Interfaces. 2019;11(15):14066. https://doi.org/10.1021/acsami.8b22221.

    Article  CAS  Google Scholar 

  63. Zhang L, Zhao C, Lin Y, Wu M, Zhao T. A high-performance lithiated silicon–sulfur battery enabled by fluorinated ether electrolytes. J Mater Chem A. 2021;9:25426. https://doi.org/10.1039/D1TA05734K.

    Article  CAS  Google Scholar 

  64. Benitez L, Cristancho D, Seminario J, De La Hoz JM, Balbuena P. Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries. Electrochim Acta. 2014;140(10):250. https://doi.org/10.1016/j.electacta.2014.05.018.

    Article  CAS  Google Scholar 

  65. Zhang H, Eshetu GG, Judez X, Li C, Rodriguez-Martínez LM, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew Chem Int Ed. 2018;57(46):15002. https://doi.org/10.1002/anie.201712702.

    Article  CAS  Google Scholar 

  66. Yi R, Zai J, Dai F, Gordin ML, Wang D. Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochem commun. 2013;36:29. https://doi.org/10.1016/j.elecom.2013.09.004.

    Article  CAS  Google Scholar 

  67. Zhao H, Zhong J, Qi Y, Liang K, Li J, Huang X, Chen W, Ren Y. 90C fast-charge Na-ion batteries for pseudocapacitive faceted TiO2 anodes based on robust interface chemistry. J Chem Eng. 2023;465(1):143032. https://doi.org/10.1016/j.cej.2023.143032.

    Article  CAS  Google Scholar 

  68. Chen S, Shen L, van Aken PA, Maier J, Yu Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater. 2017;29(21):1605650. https://doi.org/10.1002/adma.201605650.

    Article  CAS  Google Scholar 

  69. Zhang Q, Zhang C, Luo W, Cui L, Wang YJ, Jian T, Li X, Yan Q, Liu H, Ouyang C. Sequence-defined peptoids with –OH and –COOH groups as binders to reduce cracks of Si nanoparticles of lithium-ion batteries. Adv Sci. 2020;7(18):2000749. https://doi.org/10.1002/advs.202000749.

    Article  CAS  Google Scholar 

  70. Bitew Z, Tesemma M, Beyene Y, Amare M. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives. Sustain Energy Fuels. 2022;6:1014. https://doi.org/10.1039/D1SE01494C.

    Article  CAS  Google Scholar 

  71. Yohannes YB, Lin SD, Wu NL. In situ DRIFTS analysis of solid electrolyte interphase of Si-based anode with and without fluoroethylene carbonate additive. J Electrochem Soc. 2017;164(14):A3641. https://doi.org/10.1149/2.0681714jes.

    Article  CAS  Google Scholar 

  72. Li C, Shi T, Yoshitake H, Wang H. Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry. J Mater Chem A. 2016;4(43):16982. https://doi.org/10.1039/C6TA05650D.

    Article  CAS  Google Scholar 

  73. Pan K, Zou F, Canova M, Zhu Y, Kim JH. Comprehensive electrochemical impedance spectroscopy study of Si-based anodes using distribution of relaxation times analysis. J Power Sources. 2020;479(15):229083. https://doi.org/10.1016/j.jpowsour.2020.229083.

    Article  CAS  Google Scholar 

  74. Yang HW, Lee DI, Kang N, Kang WS, Kim SJ. Formation of physically durable and performance sensitive solid-electrolyte interphase of SiOx anode for lithium-ion battery. Mater Res Lett. 2019;7(3):89. https://doi.org/10.1080/21663831.2018.1557754.

    Article  CAS  Google Scholar 

  75. Didwal PN, Verma R, Nguyen AG, Ramasamy H, Lee GH, Park CJ. Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte. Adv Sci. 2022;9(13):2105448. https://doi.org/10.1002/advs.202105448.

    Article  CAS  Google Scholar 

  76. Yao W, Chu C, Zheng W, Zhan L, Wang Y. “Pea-pod-like” nitrogen-doped hollow porous carbon cathode hosts decorated with polar titanium dioxide nanocrystals as efficient polysulfide reservoirs for advanced lithium-sulfur batteries. J Mater Chem A. 2018;6(37):18191. https://doi.org/10.1039/C8TA06288A.

    Article  CAS  Google Scholar 

  77. Collado L, Reynal A, Fresno F, Barawi M, Escudero C, Perez-Dieste V, Coronado JM, Serrano DP, Durrant JR, de la Peña O’Shea VA. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat Commun. 2018;9(1):4986. https://doi.org/10.1038/s41467-018-07397-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea financially (NRF) (No. NRF-2022R1F1A1069039), the Core Research Institute (CRI) Program, the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (No. NRF-2017R1A6A1A06015181) and the Technology Innovation Program (No. 20011905) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). We are also thanks to Kyeongsuk Park (Applied Spectra, Inc.) for the assistance of LIBS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeeun Yim.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3630 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Yim, T. Regulating interfacial stability of SiOx anode with fluoride-abundant solid–electrolyte interphase by fluorine-functionalized additive. Rare Met. 43, 671–681 (2024). https://doi.org/10.1007/s12598-023-02474-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02474-y

Keywords

Navigation