Skip to main content
Log in

Effect of LiF‑introduced on electrochemical properties of carbon coated silicon suboxide anode material for lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Though silicon suboxide (SiOx, 0 < x < 2) has been considered a new generation of anode material for lithium-ion batteries, the large volume expansion and intrinsic conductivity hinder its commercial applications. In this work, silicon dioxide (SiO2) was prepared via tetraethyl orthosilicate (TEOS) hydrolyzed, and lithium fluoride (LiF) was introduced in situ, and then SiO2/LiF was covered with pyrolyzed sucrose to obtain SiOx/LiF@C. Large elastic modulus, low solubility in a carbonate solution, and high chemical stability LiF was designed to induce the formation of a stable solid-electrolyte interface (SEI) layer on the electrode surface. The more stable interface minimizes the continuous growth of the SEI layer, thereby reducing the resistance and the irreversible decay of capacity. Compared with SiOx@C-3, the SiOx/LiF@C-3 anode displays better electrochemical performance, especially cycle performance at high current density. Benefiting from the cooperation of amorphous carbon coating and stable SEI layer, SiOx/LiF@C-3 activated by low current maintains a specific capacity of 504.2 mAh g−1 and a capacity retention rate of 96% after 300 cycles at a current density of 0.3 A g−1. The great potential of LiF‑introduced for silicon suboxide anode is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data and materials included in this study are available on request.

References

  1. Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7:14–18. https://doi.org/10.1039/C3EE42613K

    Article  CAS  Google Scholar 

  2. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295. https://doi.org/10.1039/C1EE01388B

    Article  CAS  Google Scholar 

  3. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51(24):5798–5800. https://doi.org/10.1002/anie.201105006

    Article  CAS  Google Scholar 

  4. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  5. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  6. Zhu GL, Zhao CZ, Huang JQ et al (2019) Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 15(15):e1805389. https://doi.org/10.1002/smll.201805389

    Article  CAS  PubMed  Google Scholar 

  7. Blomgren GE (2016) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019. https://doi.org/10.1149/2.0251701jes

    Article  CAS  Google Scholar 

  8. Turcheniuk K, Bondarev D, Singhal V, Yushin G (2018) Ten years left to redesign lithium-ion batteries. Nature 559(7715):467–470. https://doi.org/10.1038/d41586-018-05752-3

    Article  CAS  PubMed  Google Scholar 

  9. Cui M, Wang L, Guo X et al (2019) Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries. J Mater Chem A 7(8):3874–3881. https://doi.org/10.1039/C8TA11684A

    Article  CAS  Google Scholar 

  10. Li D, Wang Y, Hu J et al (2018) Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J Power Sources 387:9–15. https://doi.org/10.1016/j.jpowsour.2018.03.048

    Article  CAS  Google Scholar 

  11. Park BH, Jeong JH, Lee G-W, Kim Y-H, Roh KC, Kim K-B (2018) Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J Power Sources 394:94–101. https://doi.org/10.1016/j.jpowsour.2018.04.112

    Article  CAS  Google Scholar 

  12. Fang G, Deng X, Zou J, Zeng X (2019) Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochim Acta 295:498–506. https://doi.org/10.1016/j.electacta.2018.10.186

    Article  CAS  Google Scholar 

  13. Choi S, Kwon TW, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348):279–283. https://doi.org/10.1126/science.aal4373

    Article  CAS  PubMed  Google Scholar 

  14. Qin J, Wu M, Feng T et al (2017) High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries. Electrochim Acta 256:259–266. https://doi.org/10.1016/j.electacta.2017.10.022

    Article  CAS  Google Scholar 

  15. Wang K, Pei S, He Z et al (2019) Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem Eng J 356:272–281. https://doi.org/10.1016/j.cej.2018.09.027

    Article  CAS  Google Scholar 

  16. Jeong M-G, Islam M, Du HL et al (2016) Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries. Electrochim Acta 209:299–307. https://doi.org/10.1016/j.electacta.2016.05.080

    Article  CAS  Google Scholar 

  17. Zhang J, Zhang C, Liu Z et al (2017) High-performance ball-milled SiOx anodes for lithium ion batteries. J Power Sources 339:86–92. https://doi.org/10.1016/j.jpowsour.2016.11.044

    Article  CAS  Google Scholar 

  18. Shi L, Wang W, Wang A, Yuan K, Jin Z, Yang Y (2016) Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J Power Sources 318:184–191. https://doi.org/10.1016/j.jpowsour.2016.03.111

    Article  CAS  Google Scholar 

  19. Ban C, Kappes BB, Xu Q et al (2012) Lithiation of silica through partial reduction. Appl Phys Lett 100(24):243905. https://doi.org/10.1063/1.4729743

    Article  CAS  Google Scholar 

  20. Pan Q, Zuo P, Mu T et al (2017) Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J Power Sources 347:170–177. https://doi.org/10.1016/j.jpowsour.2017.02.061

    Article  CAS  Google Scholar 

  21. Kim MK, Jang BY, Lee JS, Kim JS, Nahm S (2013) Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium (Li)-ion battery. J Power Sources 244:115–121. https://doi.org/10.1016/j.jpowsour.2013.03.041

    Article  CAS  Google Scholar 

  22. Meng X, Huo H, Cui Z, Guo X, Dong S (2018) Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes. Electrochim Acta 283:183–189. https://doi.org/10.1016/j.electacta.2018.06.095

    Article  CAS  Google Scholar 

  23. Lin J, Peng H, Kim J-H et al (2020) Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries. ACS Appl Mater Interfaces 12(16):18465–18472. https://doi.org/10.1021/acsami.9b23106

    Article  CAS  PubMed  Google Scholar 

  24. Shi Q, Heng S, Qu Q et al (2017) Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. J Mater Chem A 5(22):10885–10894. https://doi.org/10.1039/C7TA02706K

    Article  CAS  Google Scholar 

  25. Jin Y, Li S, Kushima A et al (2017) Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 10(2):580–592. https://doi.org/10.1039/C6EE02685K

    Article  CAS  Google Scholar 

  26. Haruta M, Okubo T, Masuo Y et al (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193. https://doi.org/10.1016/j.electacta.2016.12.071

    Article  CAS  Google Scholar 

  27. Lang J, Long Y, Qu J et al (2019) One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater 16:85–90. https://doi.org/10.1016/j.ensm.2018.04.024

    Article  Google Scholar 

  28. Yang Y, Wang Z, Yan G et al (2017) Pitch carbon and LiF co-modified Si-based anode material for lithium ion batteries. Ceram Int 43(12):8590–8595. https://doi.org/10.1016/j.ceramint.2017.03.125

    Article  CAS  Google Scholar 

  29. Chen J, Fan X, Li Q et al (2020) Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 5(5):386–397. https://doi.org/10.1038/s41560-020-0601-1

    Article  CAS  Google Scholar 

  30. Belgibayeva A, Taniguchi I (2019) Synthesis and characterization of SiO2/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochimica Acta 328:135101. https://doi.org/10.1016/j.electacta.2019.135101

    Article  CAS  Google Scholar 

  31. Yu Q, Ge P, Liu Z et al (2018) Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J Mater Chem A 6(30):14903–14909. https://doi.org/10.1039/C8TA03987A

    Article  CAS  Google Scholar 

  32. Lv P, Zhao H, Gao C, Zhang T, Liu X (2015) Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta 152:345–351. https://doi.org/10.1016/j.electacta.2014.11.149

    Article  CAS  Google Scholar 

  33. Ren Y, Li M (2016) Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J Power Sources 306:459–466. https://doi.org/10.1016/j.jpowsour.2015.12.064

    Article  CAS  Google Scholar 

  34. Hu J, Fu L, Rajagopalan R et al (2019) Nitrogen Plasma-Treated Core-Bishell Si@SiOx@TiO2-δ: Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Appl Mater Interfaces 11(31):27658–27666. https://doi.org/10.1021/acsami.9b04415

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Niu Q, Song D et al (2020) Constructing an interface compatible Li anode in organic electrolyte for solid-state lithium batteries. J Energy Storage 27:101142. https://doi.org/10.1016/j.est.2019.101142

    Article  Google Scholar 

  36. Kang S-J, Yu S, Lee C, Yang D, Lee H (2014) Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries. Electrochim Acta 141:367–373. https://doi.org/10.1016/j.electacta.2014.07.090

    Article  CAS  Google Scholar 

  37. Yu C, Lin X, Chen X et al (2020) Suppressing the Side Reaction by a Selective Blocking Layer to Enhance the Performance of Si-Based Anodes. Nano Lett 20(7):5176–5184. https://doi.org/10.1021/acs.nanolett.0c01394

    Article  CAS  PubMed  Google Scholar 

  38. Liu Q, Cresce A, Schroeder M et al (2019) Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Mater 17:366–373. https://doi.org/10.1016/j.ensm.2018.09.024

    Article  CAS  Google Scholar 

  39. Parimalam BS, MacIntosh AD, Kadam R, Lucht BL (2017) Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF6. J Phys Chem C 121(41):22733–22738. https://doi.org/10.1021/acs.jpcc.7b08433

    Article  CAS  Google Scholar 

  40. Yuan Y, Wu F, Bai Y et al (2019) Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater 16:411–418. https://doi.org/10.1016/j.ensm.2018.06.022

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Plan Foundation of Foshan (1920001001421).

Author information

Authors and Affiliations

Authors

Contributions

Zhenyuan Tang(First Author): Conceptualization, Methodology, Experiment, Formal Analysis, Writing-Original Draft; Zhengyu Zhang: Formal Analysis, Data Curation, Writing-Original Draft; Jiani Wu: Visualization, Investigation; Qian Luo: Data Curation, Formal Analysis; Lifang Lan: Experiment, Validation; Jun Li(Corresponding Author): Conceptualization, Funding Acquisition, Resources, Supervision, Writing—Review and Editing.

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Zhang, Z., Wu, J. et al. Effect of LiF‑introduced on electrochemical properties of carbon coated silicon suboxide anode material for lithium-ion batteries. Ionics 29, 3483–3492 (2023). https://doi.org/10.1007/s11581-023-05099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05099-4

Keywords

Navigation