Skip to main content
Log in

Renewable conversion of coal gangue to 13-X molecular sieve for Cd2+-containing wastewater adsorption performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Using coal gangue (CG) as raw material, a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method. The synthetic molecular sieve was used as a solid adsorbent to treat Cd2+-containing wastewater, and its adsorption behavior on Cd2+ in aqueous solution was studied and analyzed. The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and specific surface area analyzer. The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller (BET) specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd2+. The adsorption process of Cd2+ by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation. Combined with thermodynamic calculation, it can be concluded that the adsorption process is physically monolayer, spontaneous and exothermic. In this study, a low-cost and naturally available synthesis method of 13-X molecular sieve is reported. Combined with its adsorption mechanism for Cd2+, it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.

Graphical abstract

摘要

以煤矸石为原料,采用碱熔融-水热法制备了一种新型全固体废弃物基13-X分子筛材料。采用合成分子筛作为固体吸附剂处理含Cd2+废水,研究并分析了其对水溶液中Cd2+的吸附行为。采用X射线衍射、场发射扫描电镜和比表面积分析仪对分子筛的微观结构和形貌进行了研究。结果表明,合成的13-X分子筛具有较高的BET比表面积、较高的结晶度和对重金属Cd2+较高的吸附能力。分子筛对Cd2+的吸附过程符合Langmuir等温线吸附方程和Lagergren伪二级速率方程,结合热力学计算,吸附过程为物理单分子层、自发放热过程。本文报道了一种低成本、天然可得的13-X分子筛合成方法。结合其对Cd2+的吸附机理,为去除煤矸石中的重金属离子提供了一种可行、通用的方法,也为高附加值煤矸石的利用提供了新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Narasimharao K, Lingamdinne LP, Al-Thabaiti S, Mokhtar M, Alsheshri A, Alfaifi SY, Chang YY, Koduru JR. Synthesis and characterization of hexagonal MgFe layered double hydroxide/grapheme oxide nanocomposite for efficient adsorptive removal of cadmium ion from aqueous solutions: isotherm, kinetic, thermodynamic and mechanism. J Water Process Eng. 2022;47:102746. https://doi.org/10.1016/j.jwpe.2022.102746.

    Article  Google Scholar 

  2. Li WD, Zeng XY, Lv GY, Liang ZH, Liu QJ, Fu WQ, Zhang JA, Feng YX, Wu HY. Fluorescent graphene oxide derived from carbonized citric acid for copper(II) ions detection. Rare Met. 2021;40(6):1443. https://doi.org/10.1007/s12598-020-01664-2.

    Article  CAS  Google Scholar 

  3. Kailasa SK, Koduru JR, Thenepalli T. Fabrication of nanostructured materials with rare-earth elements for bioanalytical applications. Rare-Earth Met Recovery Green Technol Methods Appl. 2020. https://doi.org/10.1007/978-3-030-38106-6_7.

    Article  Google Scholar 

  4. Mehmood A, Mirza MA, Choudhary MA, Kim KH, Raza W, Raza N, Lee SS, Zhang M, Lee JH, Sarfraz M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ Res. 2019;168:382. https://doi.org/10.1016/j.envres.2018.09.020.

    Article  CAS  Google Scholar 

  5. Guo Y, Yang DF, Zhang Y, Wang LC, Wang K. Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network. Prot Control Mod Power Syst. 2022;7(1):1. https://doi.org/10.1186/s41601-022-00261-y.

    Article  Google Scholar 

  6. Li DZ, Yang DF, Li LW, Wang LC, Wang K. Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies. 2022;15(18):6665. https://doi.org/10.3390/en15186665.

    Article  CAS  Google Scholar 

  7. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92(3):407. https://doi.org/10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  8. Alhan S, Nehra M, Dilbaghi N, Singhal NK, Kim KH, Kumar S. Potential use of ZnO@ activated carbon nanocomposites for the adsorptive removal of Cd2+ ions in aqueous solutions. Environ Res. 2019;173:411. https://doi.org/10.1016/j.envres.2019.03.061.

    Article  CAS  Google Scholar 

  9. Chen QY, Luo Z, Hills C, Xue G, Tyrer M. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009;43(10):2605. https://doi.org/10.1016/j.watres.2009.03.007.

    Article  CAS  Google Scholar 

  10. Doula MK. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 2009;43(15):3659. https://doi.org/10.1016/j.watres.2009.05.037.

    Article  CAS  Google Scholar 

  11. Kang KC, Kim SS, Choi JW, Kwon SH. Sorption of Cu2+ and Cd2+ onto acid-and base-pretreated granular activated carbon and activated carbon fiber samples. J Ind Eng Chem. 2008;14(1):131. https://doi.org/10.1016/j.jiec.2007.08.007.

    Article  CAS  Google Scholar 

  12. Nataraj SK, Hosamani KM, Aminabhavi TM. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination. 2007;217(1–3):181. https://doi.org/10.1016/j.desal.2007.02.012.

    Article  CAS  Google Scholar 

  13. Hao A, Wan X, Liu X, Yu R, Shui J. Inorganic microporous membranes for hydrogen separation: challenges and solutions. Nano Res Energy. 2022;1:e9120013. https://doi.org/10.26599/NRE.2022.9120013.

    Article  Google Scholar 

  14. Cheng N, Wang B, Wu P, Lee XQ, Xing Y, Chen M, Gao B. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut. 2021;273:116448. https://doi.org/10.1016/j.envpol.2021.116448.

    Article  CAS  Google Scholar 

  15. Wang YY, Zheng KX, Zhan WH, Huang LY, Liu YD, Li T, Yang ZH, Liao Q, Chen RH, Zhang CS, Wang ZZ. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicol Environ Saf. 2021;207:111294. https://doi.org/10.1016/j.ecoenv.2020.111294.

    Article  CAS  Google Scholar 

  16. Ma CY, Du HL, Liu J, Kang L, Du X, Xi XY, Ran HP. High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1–x) BaTiO3-xBi (Y1/3Ti1/2) O3 ceramics. Ceram Int. 2021;47(17):25029. https://doi.org/10.1016/j.ceramint.2021.05.231.

    Article  CAS  Google Scholar 

  17. Yang MH, Duan CX, Zeng XJ, Li JJ, Liu CY, Zeng LJ, Zhang Y, Wang K, Xi HX. Facile fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks for enhanced toluene adsorption capacity. Rare Met. 2021;40(2):471. https://doi.org/10.1007/s12598-020-01455-9.

    Article  CAS  Google Scholar 

  18. Ran HP, Du HL, Ma CY, Zhao YY, Feng DN, Xu H. Effects of A/B-site Co-doping on microstructure and dielectric thermal stability of AgNbO3 ceramics. Sci Adv Mater. 2021;13(5):741. https://doi.org/10.1166/sam.2021.3943.

    Article  CAS  Google Scholar 

  19. Feng DN, Du HL, Ran HP, Lu T, Xia SY, Xu L, Wang ZX, Ma CY. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. J Solid State Chem. 2022;310:123081. https://doi.org/10.1016/j.jssc.2022.123081.

    Article  CAS  Google Scholar 

  20. Zhang M, Yuan J. Graphene meta-aerogels: when sculpture aesthetic meets 1D/2D composite materials. Nano Res Energy. 2022;1:e9120035. https://doi.org/10.26599/NRE.2022.9120035.

    Article  Google Scholar 

  21. Deng J, Li B, Xiao Y, Ma L, Wang CP, Bin LW, Shu CM. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy. Appl Therm Eng. 2017;116:244. https://doi.org/10.1016/j.applthermaleng.2017.01.083.

    Article  CAS  Google Scholar 

  22. Kang L, Du HL, Deng J, Jing XR, Zhang S, Znang YJ. Synthesis and catalytic performance of a new V-doped CeO2-supported alkali-activated-steel-slag-based photocatalyst. J Wuhan Univ Technol-Mater Sci Ed. 2021;36(2):209. https://doi.org/10.1007/s11595-021-2396-8.

    Article  CAS  Google Scholar 

  23. Cui L, Guo YX, Wang XM, Du ZP, Cheng FQ. Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid. Chin J Chem Eng. 2015;23(3):590. https://doi.org/10.1016/j.cjche.2014.05.017.

    Article  CAS  Google Scholar 

  24. Zhang L, Liang J, Yue L, Dong K, Li J, Zhao D, Li Z, Sun S, Luo Y, Liu Q, Cui G, Alshehri A, Guo X. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res Energy. 2022;1:e9120028. https://doi.org/10.26599/NRE.2022.9120028.

    Article  Google Scholar 

  25. Zhou WF, Du HL, Kang L, Du X, Shi YP, Qiang XJ, Li HD, Zhao J. Microstructure evolution and improved permeability of ceramic waste-based bricks. Materials. 2022;15(3):1130. https://doi.org/10.3390/ma15031130.

    Article  CAS  Google Scholar 

  26. Zhao XS, Lu GQ, Zhu HY. Effects of ageing and seeding on the formation of zeolite Y from coal fly ash. J Porous Mater. 1997;4(4):245. https://doi.org/10.1023/A:1009669104923.

    Article  CAS  Google Scholar 

  27. Li HP, Cheng RQ, Liu ZL, Du CF. Waste control by waste: Fenton–like oxidation of phenol over Cu modified ZSM–5 from coal gangue. Sci Total Environ. 2019;683:638. https://doi.org/10.1016/j.scitotenv.2019.05.242.

    Article  CAS  Google Scholar 

  28. Zhou CY, Alshameri A, Yan CJ, Qiu XM, Wang QH, Ma Y. Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite. J Porous Mater. 2013;20(4):587. https://doi.org/10.1007/s10934-012-9631-9.

    Article  CAS  Google Scholar 

  29. Wajima T, Ikegami Y. Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion. Ceram Int. 2009;35(7):2983. https://doi.org/10.1016/j.ceramint.2009.03.014.

    Article  CAS  Google Scholar 

  30. Abd El-Latif MM, Ibrahim AM, Showman MS, Abdel Hamide RR. Alumina/iron oxide nano composite for cadmium ions removal from aqueous solutions. 2013;2(2):47.https://doi.org/10.4236/ijnm.2013.22007.

  31. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451. https://doi.org/10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  32. Narasimharao K, Lingamdinne LP, Al-Thabaiti S, Mokhtar M, Alsheshri A, Alfaifi SY, Chang YY, Koduru JR. Synthesis and characterization of hexagonal MgFe layered double hydroxide/grapheme oxide nanocomposite for efficient adsorptive removal of cadmium ion from aqueous solutions: isotherm, kinetic, thermodynamic and mechanism. J Water Process Eng. 2022;47:102746. https://doi.org/10.1016/j.jwpe.2022.102746.

    Article  Google Scholar 

  33. Koduru JR, Lingamdinne LP, Kailasa SK, Thenepalli T, Chang YY, Yang JK. Recent strategies on adsorptive removal of precious metals and rare earths using low-cost natural adsorbents. Rare-Earth Met Recovery Green Technol Methods Appl. 2020. https://doi.org/10.1007/978-3-030-38106-6_5.

    Article  Google Scholar 

  34. Lingamdinne LP, Chang YY, Yang JK, Singh J, Cho EH, Shiratani M, Koduru JR, Attri P. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J. 2017;307:74. https://doi.org/10.1016/j.cej.2016.08.067.

    Article  CAS  Google Scholar 

  35. Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:122156. https://doi.org/10.1016/j.chemosphere.2020.127279.

    Article  CAS  Google Scholar 

  36. Freundlich H. Über die adsorption in lösungen. Z Phys Chem. 1907;57(1):385. https://doi.org/10.1515/zpch-1907-5723.

    Article  CAS  Google Scholar 

  37. Lingamdinne LP, Godlaveeti SK, Angaru GKR, Chang YY, Nagireddy RR, Somala AR, Koduru JR. Highly efficient surface sequestration of Pb2+ and Cr3+ from water using a Mn3O4 anchored reduced graphene oxide: selective removal of Pb2+ from real water. Chemosphere. 2022;299:134457. https://doi.org/10.1016/j.chemosphere.2022.134457.

    Article  CAS  Google Scholar 

  38. Li XB, Ye JJ, Liu ZH, Qiu YQ, Li LJ, Mao S, Wang XC, Zhang Q. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd (II) in aqueous solution. J Cent South Univ. 2018;25(1):9. https://doi.org/10.1007/s11771-018-3712-0.

    Article  CAS  Google Scholar 

  39. Liang ZS, Gao Q, Wu ZR, Gao HY. Removal and kinetics of cadmium and copper ion adsorption in aqueous solution by zeolite NaX synthesized from coal gangue. Environ Sci Pollut Res. 2022;29(56):84651. https://doi.org/10.1007/s11356-022-21700-1.

    Article  CAS  Google Scholar 

  40. Keochaiyom B, Wan J, Zeng GM, Huang DL, Xue WJ, Hu L, Huang C, Zhang C, Cheng M. Synthesis and application of magnetic chlorapatite nanoparticles for zinc (II), cadmium (II) and lead (II) removal from water solutions. J Colloid Interface Sci. 2017;505:824. https://doi.org/10.1016/j.jcis.2017.06.056.

    Article  CAS  Google Scholar 

  41. Phuengprasop T, Sittiwong J, Unob F. Removal of heavy metal ions by iron oxide coated sewage sludge. J Hazard Mater. 2011;186(1):502. https://doi.org/10.1016/j.jhazmat.2010.11.065.

    Article  CAS  Google Scholar 

  42. Qi GX, Lei XF, Li L, Sun YL, Yuan C, Wang BD, Yin LD, Xu H, Wang Y. Coal fly ash-derived mesoporous calcium-silicate material (MCSM) for the efficient removal of Cd (II), Cr (III), Ni (II) and Pb (II) from acidic solutions. Procedia Environ Sci. 2016;31:567. https://doi.org/10.1016/j.proenv.2016.02.088.

    Article  CAS  Google Scholar 

  43. Qiu RF, Cheng FQ, Huang HM. Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant. J Clean Prod. 2018;172:1918. https://doi.org/10.1016/j.jclepro.2017.11.236.

    Article  CAS  Google Scholar 

  44. Jamil TS, Ibrahim HS, Abd El-Maksoud IH, El-Wakeel ST. Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination. 2010;258(1–3):34. https://doi.org/10.1016/j.desal.2010.03.052.

    Article  CAS  Google Scholar 

  45. Lei H, Hao ZD, Chen K, Chen YH, Zhang JG, Hu ZJ, Song YJ, Rao PH, Huang Q. Insight into adsorption performance and mechanism on efficient removal of methylene blue by accordion-like V2CTx MXene. J Phys Chem Lett. 2020;11(11):4253. https://doi.org/10.1021/acs.jpclett.0c00973.

    Article  CAS  Google Scholar 

  46. Jiang L, Wen YY, Zhu ZJ, Liu XF, Shao W. A Double cross-linked strategy to construct graphene aerogels with highly efficient methylene blue adsorption performance. Chemosphere. 2021;265:129. https://doi.org/10.1016/j.chemosphere.2020.129169.

    Article  CAS  Google Scholar 

  47. Zhou L, Zhou HJ, Hu YX, Yan S, Yang JL. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. J Environ Manag. 2019;234:245. https://doi.org/10.1016/j.jenvman.2019.01.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52172099), the Basic Research Plan of Natural Science of Shaanxi Province (No. 2020JQ-754), the Key Innovation Team of Shaanxi Province (No. 2014KCT-04), the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology (Grant No. 6310221009), the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology (Grant No. 6310221009), the Special Project of Shaanxi Province (No. 19JK0490) and the Study on Preparation and Properties of New Solid-Wastebased Cementitious Materials (No. 6000190120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Kang or Peng Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Liu, SF., Yi, DW. et al. Renewable conversion of coal gangue to 13-X molecular sieve for Cd2+-containing wastewater adsorption performance. Rare Met. 43, 702–710 (2024). https://doi.org/10.1007/s12598-023-02461-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02461-3

Keywords

Navigation