Skip to main content
Log in

Metal-based inorganic nanocrystals for biological sonodynamic therapy applications: recent progress and perspectives

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the fast development of technology for the treatment of tumor and bacteria, photo-therapeutic strategies emerge as a kind of highly effective and common treatment, but the low tissue penetration depth of light limits their development. Sonodynamic therapy (SDT), as an efficient and non-invasive treatment, attracts more people's attention due to the inherent property of high tissue penetration. The soft tissue penetration depth of ultrasound (US) can even reach more than 10 cm, which has great advantage over that of light. Therefore, many sonosensitizers are studied and applied to SDT-based therapy. Metal-based inorganic nanocrystals are able to generate more reactive oxygen species (ROS) due to the special composition and band structure. The representative achievements and the specific functions of the nanocrystals sonosensitizers are summarized in this work, and the relationship of structure/composition-SDT performance and the internally regulated composite is revealed. Synergistic effects of SDT in combination with other therapeutic modalities are mainly highlighted. At the same time, the critical and potential issues and future perspectives are addressed.

Graphical abstract

摘要

随着肿瘤和细菌治疗技术的飞速发展,光疗策略作为一种高效常用的治疗手段应运而生,但光的组织穿透深度低限制了其发展。声动力疗法(SDT)作为一种高效、无创的治疗方法,由于具有高组织穿透性的固有特性而受到更多人的关注。超声(US)的软组织穿透深度甚至可以达到10厘米以上,相比光有很大的优势。因此,许多声敏剂被研究并应用于SDT 的治疗。由于特殊的成分组成和能带结构,金属基无机纳米晶体能够产生更多的活性氧(ROS)。我们总结了这些纳米晶体声敏剂的代表性成果和具体功能,结构/组成与SDT性能与内部调节复合材料的关系。主要强调了 SDT 与其他治疗方式的协同作用。同时,也对关键和潜在的问题以及未来的前景进行了阐述

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Reproduced with permission from Ref. [49]. Copyright 2016, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [53]. Copyright 2018, the Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [62]. Copyright 2020, Ivyspring International Publisher

Fig. 4

Reproduced with permission from Ref. [27]. Copyright 2017, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [70]. Copyright 2020, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [74]. Copyright 2019, WILEY–VCH

Fig. 7

Reproduced with permission from Ref. [77]. Copyright 2021, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [80]. Copyright 2021, Elsevier Ltd

Fig. 9

Reproduced with permission from Ref. [86]. Copyright 2021, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [87]. Copyright 2022, American Chemical Society

Similar content being viewed by others

References

  1. Qu XY, Hong Y, Cai H, Sun X, Shen Q, Yang DL, Dong XC, Jiao AH, Chen P, Shao JJ. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Met. 2022;41(1):56. https://doi.org/10.1007/s12598-021-01795-0.

    Article  CAS  Google Scholar 

  2. Zheng NN, Kong WY, Huang Z, Liu XJ, Liang SH, Deng GY, Zhao LJ, Lu J. Novel theranostic nanoagent based on CuMo2S3-PEG-Gd for MRI-guided photothermal/photodynamic/chemodynamic therapy. Rare Met. 2022;41(1):45. https://doi.org/10.1007/s12598-021-01793-2.

    Article  CAS  Google Scholar 

  3. Lv R, Liang YQ, Li ZY, Zhu SL, Cui ZD, Wu SL. Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Met. 2022;41(2):639. https://doi.org/10.1007/s12598-021-01759-4.

    Article  CAS  Google Scholar 

  4. Liu YL, Sun YH, Zhao Y, Li CL, Zhao FL, Yao XH, Hang RQ, Chu PK. Selective inhibition effects on cancer cells and bacteria of Ni–Ti–O nanoporous layers grown on biomedical NiTi alloy by anodization. Rare Met. 2022;41(1):78. https://doi.org/10.1007/s12598-021-01707-2.

    Article  CAS  Google Scholar 

  5. He X, Yang Y, Guo Y, Lu S, Du Y, Li JJ, Zhang X, Leung NL, Zhao Z, Niu G. Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J Am Chem Soc. 2020;142(8):3959. https://doi.org/10.1021/jacs.9b12936.

    Article  CAS  Google Scholar 

  6. Bushin LB, Covington BC, Rued BE, Federle MJ, Seyedsayamdost MR. Discovery and biosynthesis of streptosactin, a sactipeptide with an alternative topology encoded by commensal bacteria in the human microbiome. J Am Chem Soc. 2020;142(38):16265. https://doi.org/10.1021/jacs.0c05546.

    Article  CAS  Google Scholar 

  7. Nair CK, Parida DK, Nomura T. Radioprotectors in radiotherapy. J Radiat Res. 2001;42(1):21. https://doi.org/10.1269/jrr.42.21.

    Article  CAS  Google Scholar 

  8. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65. https://doi.org/10.1038/nrc1529.

    Article  CAS  Google Scholar 

  9. Demicheli R, Retsky M, Hrushesky W, Baum M, Gukas I. The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008;19(11):1821. https://doi.org/10.1093/annonc/mdn386.

    Article  CAS  Google Scholar 

  10. Wang D, Wang H, Ji L, Xu M, Bai B, Wan X, Hou D, Qiao ZY, Wang H, Zhang J. Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano. 2021;15(5):8694. https://doi.org/10.1021/acsnano.1c00772.

    Article  CAS  Google Scholar 

  11. Wang D, Zhu Y, Wan X, Zhang X, Zhang J. Colloidal semiconductor nanocrystals for biological photodynamic therapy applications: recent progress and perspectives. Prog Nat Sci Mater Inter. 2020;30(4):443. https://doi.org/10.1016/j.pnsc.2020.08.016.

    Article  CAS  Google Scholar 

  12. Wang D, Niu L, Qiao ZY, Cheng DB, Wang J, Zhong Y, Bai F, Wang H, Fan H. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano. 2018;12(4):3796. https://doi.org/10.1021/acsnano.8b01010.

    Article  CAS  Google Scholar 

  13. Wang J, Zhong Y, Wang X, Yang W, Bai F, Zhang B, Alarid L, Bian K, Fan H. pH-dependent assembly of porphyrin–silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017;17(11):6916. https://doi.org/10.1021/acs.nanolett.7b03310.

    Article  CAS  Google Scholar 

  14. Wang X, Wang J, Wang J, Zhong Y, Han L, Yan J, Duan P, Shi B, Bai F. Noncovalent self-assembled smart gold (III) porphyrin nanodrug for synergistic chemo-photothermal therapy. Nano Lett. 2021;21(8):3418. https://doi.org/10.1021/acs.nanolett.0c04915.

    Article  CAS  Google Scholar 

  15. Huang Y, Gao Q, Li X, Gao Y, Han H, Jin Q, Yao K, Ji J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020;13(9):2340. https://doi.org/10.1007/s12274-020-2853-2.

    Article  CAS  Google Scholar 

  16. Ji M, Xu M, Zhang W, Yang Z, Huang L, Liu J, Zhang Y, Gu L, Yu Y, Hao W. Structurally well-defined Au@Cu2−xS core–shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv Mater. 2016;28(16):3094. https://doi.org/10.1002/adma.201503201.

    Article  CAS  Google Scholar 

  17. Wan X, Xu M, Huang L, Tu G, Ji M, Su M, Li Y, Li X, Wang H, Zhang J. Positively charged collective oscillations induce efficient Aβ1–42 fibril degradation in the presence of novel Au@Cu2−xS core/shell nanorods. Chem Commun. 2021;57(52):6384. https://doi.org/10.1039/D1CC01470F.

    Article  CAS  Google Scholar 

  18. Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-organic framework encapsulated whole-cell vaccines enhance humoral immunity against bacterial infection. ACS Nano. 2021;15(11):17426. https://doi.org/10.1021/acsnano.1c03092.

    Article  CAS  Google Scholar 

  19. Wang D, Cheng DB, Ji L, Niu LJ, Zhang XH, Cong Y, Cao RH, Zhou L, Bai F, Qiao ZY, Wang H. Precise magnetic resonance imaging-guided sonodynamic therapy for drug-resistant bacterial deep infection. Biomaterials. 2021;264:120386. https://doi.org/10.1016/j.biomaterials.2020.120386.

    Article  CAS  Google Scholar 

  20. Dong Y, Dong S, Liu B, Yu C, Liu J, Yang D, Yang P, Lin J. 2D piezoelectric Bi2MoO6 nanoribbons for GSH-enhanced sonodynamic therapy. Adv Mater. 2021;33(51):2106838. https://doi.org/10.1002/adma.202106838.

    Article  CAS  Google Scholar 

  21. Xu M, Zhou L, Zheng L, Zhou Q, Liu K, Mao Y, Song S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021;497:229. https://doi.org/10.1016/j.canlet.2020.10.037.

    Article  CAS  Google Scholar 

  22. Yang K, Yue L, Yu G, Rao L, Tian R, Wei J, Yang Z, Sun C, Zhang X, Xu M. A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials. 2021;275:120822. https://doi.org/10.1016/j.biomaterials.2021.120822.

    Article  CAS  Google Scholar 

  23. Yumita N, Nishigaki R, Umemura K, Umemura S. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res. 1989;80(3):219. https://doi.org/10.1111/j.1349-7006.1989.tb02295.x.

    Article  CAS  Google Scholar 

  24. Umemura S, Kawabata K, Yumita N, Nishigaki R, Umemura K. Sonodynamic approach to tumor treatment. In: IEEE 1992 Ultrasonics Symposium Proceedings. Tucson; 1992. 1231. https://doi.org/10.1109/ULTSYM.1992.275856.

  25. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795. https://doi.org/10.1021/cr900300p.

    Article  CAS  Google Scholar 

  26. Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc. 2017;139(3):1275. https://doi.org/10.1021/jacs.6b11846.

    Article  CAS  Google Scholar 

  27. Dai C, Zhang S, Liu Z, Wu R, Chen Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano. 2017;11(9):9467. https://doi.org/10.1021/acsnano.7b05215.

    Article  CAS  Google Scholar 

  28. Su K, Tan L, Liu X, Cui Z, Zheng Y, Li B, Han Y, Li Z, Zhu S, Liang Y. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano. 2020;14(2):2077. https://doi.org/10.1021/acsnano.9b08686.

    Article  CAS  Google Scholar 

  29. Han DL, Yu PL, Liu XM, Xu YD, Wu SL. Polydopamine modified CuS@ HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability. Rare Met. 2022;41(2):663. https://doi.org/10.1007/s12598-021-01786-1.

    Article  CAS  Google Scholar 

  30. You DG, Deepagan V, Um W, Jeon S, Son S, Chang H, Yoon HI, Cho YW, Swierczewska M, Lee S. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep. 2016;6(1):1. https://doi.org/10.1038/srep23200.

    Article  CAS  Google Scholar 

  31. Smith AM, Mancini MC, Nie S. Second window for in vivo imaging. Nat Nanotech. 2009;4(11):710. https://doi.org/10.1038/nnano.2009.326.

    Article  CAS  Google Scholar 

  32. Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater. 2014;26(39):6689. https://doi.org/10.1002/adma.201400703.

    Article  CAS  Google Scholar 

  33. Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11(6):349. https://doi.org/10.1016/j.ultsonch.2004.03.004.

    Article  CAS  Google Scholar 

  34. Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today. 2014;19(4):502. https://doi.org/10.1016/j.drudis.2014.01.010.

    Article  CAS  Google Scholar 

  35. Costley D, Mc Ewan C, Fowley C, McHale AP, Atchison J, Nomikou N, Callan JF. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31(2):107. https://doi.org/10.3109/02656736.2014.992484.

    Article  CAS  Google Scholar 

  36. Pickworth M, Dendy P, Leighton T, Walton A. Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 2. Thresholds for sonoluminescence from a therapeutic ultrasound beam and the effect of temperature and duty cycle. Phys Med Biol. 1988;33(11):1249. https://doi.org/10.1088/0031-9155/33/11/003.

    Article  Google Scholar 

  37. Yumita N, Iwase Y, Nishi K, Komatsu H, Takeda K, Onodera K, Fukai T, Ikeda T, Umemura SI, Okudaira K. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics. 2012;2(9):880. https://doi.org/10.7150/thno.3899.

    Article  CAS  Google Scholar 

  38. Yumita N, Okudaira K, Momose Y, Umemura S. Sonodynamically induced apoptosis and active oxygen generation by gallium–porphyrin complex, ATX-70. Cancer Chemother Pharmacol. 2010;66(6):1071. https://doi.org/10.1007/s00280-010-1264-6.

    Article  CAS  Google Scholar 

  39. Wang W, Pan X, Yang H, Wang H, Wu Q, Zheng L, Xu B, Wang J, Shi X, Bai F. Bioactive metal–organic frameworks with specific metal–nitrogen (M–N) active sites for efficient sonodynamic tumor therapy. ACS Nano. 2021;15(12):20003. https://doi.org/10.1021/acsnano.1c07547.

    Article  CAS  Google Scholar 

  40. Siu T, Jackson J, Burt H, Chiao M. Drug uptake enhancement using sonodynamic effects at 4 MHz—a potential application for micro-ultrasonic-transducers. IEEE Trans Biomed Eng. 2007;54(6):1153. https://doi.org/10.1109/TBME.2006.889773.

    Article  Google Scholar 

  41. Bai B, Xu M, Li J, Zhang S, Qiao C, Liu J, Zhang J. Dopant diffusion equilibrium overcoming impurity loss of doped QDs for multimode anti-counterfeiting and encryption. Adv Fun Mater. 2021;31(25):2100286. https://doi.org/10.1002/adfm.202100286.

    Article  CAS  Google Scholar 

  42. Bai B, Xu M, Li N, Chen W, Liu J, Liu J, Rong H, Fenske D, Zhang J. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew Chem Int Edit. 2019;58(15):4852. https://doi.org/10.1002/anie.201807695.

    Article  CAS  Google Scholar 

  43. Bai B, Zhao C, Xu M, Ma J, Du Y, Chen H, Liu J, Liu J, Rong H, Chen W, Weng Y, Brovelli S, Zhang J. Unique cation exchange in nanocrystal matrix via surface vacancy engineering overcoming chemical kinetic energy barriers. Chem. 2020;6(11):3086. https://doi.org/10.1016/j.chempr.2020.08.020.

    Article  CAS  Google Scholar 

  44. Liu J, Feng J, Gui J, Chen T, Xu M, Wang H, Dong H, Chen H, Li X, Wang L, Chen Z, Yang Z, Liu J, Hao W, Yao Y, Gu L, Weng Y, Huang Y, Duan X, Zhang J, Li Y. Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy. 2018;48:44. https://doi.org/10.1016/j.nanoen.2018.02.040.

    Article  CAS  Google Scholar 

  45. Wang H, Gao Y, Liu J, Li X, Ji M, Zhang E, Cheng X, Xu M, Liu J, Rong H, Chen W, Fan F, Li C, Zhang J. Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv Energy Mater. 2019;9(15):1803889. https://doi.org/10.1002/aenm.201803889.

    Article  CAS  Google Scholar 

  46. Yin ZF, Wu L, Yang HG, Su YH. Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys. 2013;15(14):4844. https://doi.org/10.1039/C3CP43938K.

    Article  Google Scholar 

  47. Ratanatawanate C, Chyao A, Balkus KJ Jr. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J Am Chem Soc. 2011;133(10):3492. https://doi.org/10.1021/ja109328a.

    Article  CAS  Google Scholar 

  48. Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N, Kubota Y, Terasaka S, Houkin K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason sonochem. 2011;18(5):1197. https://doi.org/10.1016/j.ultsonch.2010.12.017.

    Article  CAS  Google Scholar 

  49. Deepagan V, You DG, Um W, Ko H, Kwon S, Choi KY, Yi GR, Lee JY, Lee DS, Kim K, Kwon IC, Park JH. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016;16(10):6257. https://doi.org/10.1021/acs.nanolett.6b02547.

    Article  CAS  Google Scholar 

  50. Liu B, Abbas A, Zhou C. Two-dimensional semiconductors: from materials preparation to electronic applications. Adv Electron Mater. 2017;3(7):1700045. https://doi.org/10.1002/aelm.201700045.

    Article  CAS  Google Scholar 

  51. Liu Y, Duan X, Shin HJ, Park S, Huang Y, Duan X. Promises and prospects of two-dimensional transistors. Nature. 2021;591(7848):43. https://doi.org/10.1038/s41586-021-03339-z.

    Article  CAS  Google Scholar 

  52. He Q, Liu Y, Tan C, Zhai W, Nam G, Zhang H. Quest for p-type two-dimensional semiconductors. ACS Nano. 2019;13(11):12294. https://doi.org/10.1021/acsnano.9b07618.

    Article  CAS  Google Scholar 

  53. Ouyang J, Deng L, Chen W, Sheng J, Liu Z, Wang L, Liu YN. Two dimensional semiconductors for ultrasound-mediated cancer therapy: the case of black phosphorus nanosheets. Chem Commun. 2018;54(23):2874. https://doi.org/10.1039/C8CC00392K.

    Article  CAS  Google Scholar 

  54. Di Q, Zhu X, Liu J, Zhang X, Shang H, Chen W, Liu J, Rong H, Xu M, Zhang J. High-performance quantum dots with synergistic doping and oxide shell protection synthesized by cation exchange conversion of ternary-composition nanoparticles. J Phys Chem Lett. 2019;10(10):260. https://doi.org/10.1021/acs.jpclett.9b00617.

    Article  CAS  Google Scholar 

  55. Zhang J, Di Q, Liu J, Bai B, Liu J, Xu M, Liu J. Heterovalent doping in colloidal semiconductor nanocrystals: cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities. J Phys Chem Lett. 2017;8(19):4943. https://doi.org/10.1021/acs.jpclett.7b00351.

    Article  CAS  Google Scholar 

  56. Di Q, Wang J, Zhao Z, Liu J, Xu M, Liu J, Rong H, Chen W, Zhang J. Near-infrared luminescent ternary Ag3SbS3 quantum dots by in situ conversion of Ag nanocrystals with Sb (C9H19COOS)3. Chem Eur J. 2018;24(70):18643. https://doi.org/10.1002/chem.201804800.

    Article  CAS  Google Scholar 

  57. Liu J, Zhao Q, Liu JL, Wu YS, Cheng Y, Ji MW, Qian HM, Hao WC, Zhang LJ, Wei XJ. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II−VI nanocrystals. Adv Mater. 2015;27(17):2753. https://doi.org/10.1002/adma.201500247.

    Article  CAS  Google Scholar 

  58. Pinchetti V, Di Q, Lorenzon M, Camellini A, Fasoli M, Zavelani-Rossi M, Meinardi F, Zhang J, Crooker SA, Brovelli S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat Nanotech. 2018;13(2):145. https://doi.org/10.1038/s41565-017-0024-8.

    Article  CAS  Google Scholar 

  59. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Edit. 2012;51(39):9818. https://doi.org/10.1002/anie.201206059.

    Article  CAS  Google Scholar 

  60. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc. 2010;132(5):1470. https://doi.org/10.1021/ja909490r.

    Article  CAS  Google Scholar 

  61. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012;6(5):3695. https://doi.org/10.1021/nn301218z.

    Article  CAS  Google Scholar 

  62. Li C, Yang XQ, An J, Cheng K, Hou XL, Zhang XS, Hu YG, Liu B, Zhao YD. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics. 2020;10(2):867. https://doi.org/10.7150/thno.37930.

    Article  CAS  Google Scholar 

  63. Willyard C. Drug-resistant bacteria ranked. Nature. 2017;543(7643):15.

    Article  CAS  Google Scholar 

  64. Schwartz KL, Morris SK. Travel and the spread of drug-resistant bacteria. Curr Infect Dis Rep. 2018;20(9):1. https://doi.org/10.1007/s11908-018-0634-9.

    Article  Google Scholar 

  65. Wang Z, Liu C, Zhao Y, Hu M, Ma D, Zhang P, Xue Y, Li X. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chem Eng J. 2019;356:811. https://doi.org/10.1016/j.cej.2018.09.077.

    Article  CAS  Google Scholar 

  66. Wang X, Zhong X, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today. 2020;35:100946. https://doi.org/10.1016/j.nantod.2020.100946.

    Article  CAS  Google Scholar 

  67. Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Edit. 2019;58(4):946. https://doi.org/10.1002/ange.201805664.

    Article  CAS  Google Scholar 

  68. Liu J, Zhao Y, Liu J, Wang S, Cheng Y, Ji M, Zhou Y, Xu M, Hao W, Zhang J. From Cu2S nanocrystals to Cu doped CdS nanocrystals through cation exchange: controlled synthesis, optical properties and their p-type conductivity research. Sci China Mater. 2015;58(9):693. https://doi.org/10.1007/s40843-015-0080-z.

    Article  CAS  Google Scholar 

  69. Pan R, Liu J, Li Y, Li X, Zhang E, Di Q, Su M, Zhang J. Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core–shell nanocrystals toward unassisted photoelectrochemical water splitting. J Mater Chem A. 2019;7(40):23038. https://doi.org/10.1039/C9TA08766D.

    Article  CAS  Google Scholar 

  70. Bai S, Yang N, Wang X, Gong F, Dong Z, Gong Y, Liu Z, Cheng L. Ultrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapy. ACS Nano. 2020;14(11):15119. https://doi.org/10.1021/acsnano.0c05235.

    Article  CAS  Google Scholar 

  71. Zhang M, Yang D, Dong C, Huang H, Feng G, Chen Q, Zheng Y, Tang H, Chen Y, Jing X. Two-dimensional MXene-originated in situ nanosonosensitizer generation for augmented and synergistic sonodynamic tumor nanotherapy. ACS Nano. 2022;16(6):9938. https://doi.org/10.1021/acsnano.2c04630.

    Article  CAS  Google Scholar 

  72. Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83(8):1005. https://doi.org/10.1016/j.bcp.2011.11.016.

    Article  CAS  Google Scholar 

  73. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 2020;10(10):1429. https://doi.org/10.3390/biom10101429.

    Article  CAS  Google Scholar 

  74. Gong F, Cheng L, Yang N, Betzer O, Feng L, Zhou Q, Li Y, Chen R, Popovtzer R, Liu Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv Mater. 2019;31(23):1900730. https://doi.org/10.1002/adma.201900730.

    Article  CAS  Google Scholar 

  75. Zhong X, Wang X, Cheng L, Tang Y, Zhan G, Gong F, Zhang R, Jun H, Liu Z, Yang X. GSH‐depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy. Adv Fun Mater. 2020;30(4):1907954. https://doi.org/10.1002/adfm.201907954.

    Article  CAS  Google Scholar 

  76. Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano. 2021;15(2):2005. https://doi.org/10.1021/acsnano.0c06962.

    Article  CAS  Google Scholar 

  77. Yu Y, Tan L, Li Z, Liu X, Zheng Y, Feng X, Liang Y, Cui Z, Zhu S, Wu S. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano. 2021;15(6):10628. https://doi.org/10.1021/acsnano.1c03424.

    Article  CAS  Google Scholar 

  78. Qi GB, Gao YJ, Wang L, Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater. 2018;30(22):1703444. https://doi.org/10.1002/adma.201703444.

    Article  CAS  Google Scholar 

  79. Zou P, Chen WT, Sun T, Gao Y, Li LL, Wang H. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci-UK. 2020;8(18):4975. https://doi.org/10.1039/D0BM00789G.

    Article  CAS  Google Scholar 

  80. Zhang XH, Guo RC, Chen YF, Xu X, Yang ZX, Cheng DB, Chen H, Qiao ZY, Wang H. A BiOCl nanodevice for pancreatic tumor imaging and mitochondria-targeted therapy. Nano Today. 2021;40:101285. https://doi.org/10.1016/j.nantod.2021.101285.

    Article  CAS  Google Scholar 

  81. Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperther. 2018;34(8):1316. https://doi.org/10.1080/02656736.2018.1430867.

    Article  Google Scholar 

  82. Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 2018;12(4):3699. https://doi.org/10.1021/acsnano.8b00893.

    Article  CAS  Google Scholar 

  83. Zhang Y, Xu Y, Sun D, Meng Z, Ying W, Gao W, Hou R, Zheng Y, Cai X, Hu B, Lin X. Hollow magnetic nanosystem-boosting synergistic effect between magnetic hyperthermia and sonodynamic therapy via modulating reactive oxygen species and heat shock proteins. Chem Eng J. 2020;390:124521. https://doi.org/10.1016/j.cej.2020.124521.

    Article  CAS  Google Scholar 

  84. Guo J, Yu Z, Das M, Huang L. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano. 2020;14(4):5075. https://doi.org/10.1021/acsnano.0c01676.

    Article  CAS  Google Scholar 

  85. Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019;52(6):1543. https://doi.org/10.1021/acs.accounts.9b00148.

    Article  CAS  Google Scholar 

  86. Fu S, Yang R, Ren J, Liu J, Zhang L, Xu Z, Kang Y, Xue P. Catalytically active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano. 2021;15(7):11953. https://doi.org/10.1021/acsnano.1c03128.

    Article  CAS  Google Scholar 

  87. Cao Z, Yuan G, Zeng L, Bai L, Liu X, Wu M, Sun R, Chen Z, Jiang Y, Gao Q, Chen Y, Zhang Y, Pan Y, Wang J. Macrophage-targeted sonodynamic/photothermal synergistic therapy for preventing atherosclerotic plaque progression using CuS/TiO2 heterostructured nanosheets. ACS Nano. 2022;16(7):10608. https://doi.org/10.1021/acsnano.2c02177.

    Article  CAS  Google Scholar 

  88. Yan D, Xiao S, Li X, Jiang J, He Q, Li H, Qin J, Wu R, Niu X, Chen JS. NiS2/FeS heterostructured nanoflowers for high-performance sodium storage. Energy Mater Adv. 2023;4:0012. https://doi.org/10.34133/energymatadv.0012.

    Article  CAS  Google Scholar 

  89. Wang C, Xiao J, Yan Z, Niu X, Lin T, Zhou Y, Li J, Han X. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Res. 2023;16(1):1703. https://doi.org/10.1007/s12274-022-4656-0.

    Article  CAS  Google Scholar 

  90. Wu F, Dong J, Chen L, Chen G, Shi Q, Nie Y, Lu Y, Bao L, Li N, Song T, Chen S, Su Y. Removing the intrinsic NiO phase and residual lithium for high-performance nickel-rich materials. Energy Mater Adv. 2023;4:0007. https://doi.org/10.34133/energymatadv.0007.

    Article  CAS  Google Scholar 

  91. Liu Y, Gao Y, Zhi J, Huang R, Li W, Huang X, Yan G, Ji Z, Mai W. All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Res. 2022;15(2):1094. https://doi.org/10.1007/s12274-021-3608-4.

    Article  CAS  Google Scholar 

  92. Wang D, Li H, Ji L, Liu J, Li Y, Xu M, Wang H, Qiao ZY, Zhang J. Engineering of plasmonic metal-semiconductor yolk-shell nanostructures for multi-intensified photodynamic- and immuno- therapy against drug resistant bacteria. Nano Today. 2023;49:101803. https://doi.org/10.1016/j.nantod.2023.101803.

    Article  CAS  Google Scholar 

  93. Wan X, Pan Y, Xu Y, Liu J, Chen H, Pan R, Zhao Y, Su P, Li Y, Zhang X, Zhang S, Li H, Su D, Weng Y, Zhang J. Ultralong lifetime of plasmon-excited electrons realized in nonepitaxial/epitaxial Au@CdS/CsPbBr3 triple-heteronanocrystals. Adv Mater. 2023;35(3):2207555. https://doi.org/10.1002/adma.202207555.

    Article  CAS  Google Scholar 

  94. Luo Y, Guo Q, Xu J, Zhou H, Wang Z, He H. Growth of BaTaO2N–BaNa0.25Ta0.75O3 solid solution photocatalyst for visible light-driven Z-scheme overall water splitting. Energy Mater Adv. 2022;2022:0003. https://doi.org/10.34133/energymatadv.0003.

    Article  CAS  Google Scholar 

  95. Hu X, Wu J, Wu M, Hu J. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 2022;15(2):805. https://doi.org/10.1007/s12274-021-3634-2.

    Article  CAS  Google Scholar 

  96. Wang D, Bi X, Ji L, Fan Y, Wang H, Zhang J. Enhancing the antibacterial activity of near-infrared light-triggered photothermal therapy using hybrid Au/ZnSe nanodumbbells. New J Chem. 2022;46(38):18587. https://doi.org/10.1039/D2NJ03142F.

    Article  CAS  Google Scholar 

  97. Zhang F, Ma Z, Zhifeng Shi X, Chen DW, Li X, Shan C. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater Adv. 2021. https://doi.org/10.34133/2021/5198145.

    Article  Google Scholar 

  98. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  99. Liu Y, Molokeev MS, Xia Z. Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence. Energy Mater Adv. 2021. https://doi.org/10.34133/2021/2585274.

    Article  Google Scholar 

  100. Huang Z, Huang F, Tian JJ. Progresses in CuInSe2 quantum dots: synthesis and optoelectronic applications. Chin J Rare Met. 2022;46(6):695. https://doi.org/10.13373/j.cnki.cjrm.XY22010013.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22105116, 51872030, 51631001, 51702016, 51902023 and 21801015), Joint R&D Plan of Hongkong, Macao, Taiwan and Beijing (No. Z191100001619002), the Fundamental Research Funds for the Central Universities (No. 2017CX01003) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Tao Zhang.

Ethics declarations

Conflict of interests

Jia-Tao Zhang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, JT. Metal-based inorganic nanocrystals for biological sonodynamic therapy applications: recent progress and perspectives. Rare Met. 43, 413–430 (2024). https://doi.org/10.1007/s12598-023-02450-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02450-6

Keywords

Navigation