Skip to main content
Log in

Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Quasi-solid-state lithium metal batteries (QSSLMBs) assembled with polyvinylidene fluoride (PVDF) are a promising class of next-generation rechargeable batteries due to their safety, high energy density, and superior interfacial properties. However, PVDF has a series of inherent drawbacks such as low ionic conductivity, ease of crystallization, and hydrophobic character that leading to poor cell properties. To tackle these issues, a lignin-reinforced PVDF electrolyte is proposed in this work to solve these drawbacks of PVDF and enhance the comprehensive performance of QSSBs. The lithophilic polar groups of lignin can promote uniform deposition of Li on the electrodes. Cooperating with the improved mechanical properties can efficiently prevent Li dendrites penetration through the separator. In addition, more active sites provided by lignin can also enhance Li+ transport and lead to a faster electrochemical reaction kinetic. Benefitting from the ingenious design, Li symmetric cells with 5% lignin-PVDF quasi-solid-state electrolyte can operate for 900 h at a high current density/capacity of 5 mA·cm−2/5 mAh·cm−2, while short-circuiting occurs after 56 h for the counterpart (pure PVDF). Moreover, a full cell of Li/5% lignin-PVDF/LFP cell demonstrates a high capacity of 96.2 mAh·g−1 after 2000 cycles at 10 C. This work is expected to open up promising opportunities to develop other high-energy/power-density QSSLMBs.

Graphical abstract

摘要

用聚偏二氟乙烯 (PVDF) 组装的准固态锂金属电池 (QSSLMBs) 由于其安全性、高能量密度和优越的界面特性, 是一种有前景的下一代可充电电池。然而, PVDF有一系列固有的缺点, 如离子电导率低、易结晶和疏水等, 导致电池性能差。为了解决这些问题, 本工作提出了一种木质素增强的PVDF电解质, 以解决PVDF的这些缺点, 并提高QSSB的综合性能。木质素的亲锂性极性基团可以促进锂在电极上的均匀沉积。与改善的机械性能相配合, 可以有效地防止锂枝晶穿透隔膜。此外, 木质素提供的更多的活性位点也可以增强锂离子的传输, 并导致更快的电化学反应动力学。受益于这种巧妙的设计, 掺杂了5%木质素-PVDF准固态电解质的锂离子对称电池可以在5 mA·cm−2/5 mAh·cm−2的高电流密度/容量下运行900h, 而对应的电池 (纯PVDF) 在56h后发生短路。此外, 在10C条件下进行2000次循环后, 5%木质素-PVDF/LFP的全电池表现出96.2 mAh·g−1的高容量。这项工作有望为开发其他高能量/高功率密度的QSSLMB提供机会。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu W, Wang JL, Ding F, Chen XL, Nasybulin E, Zhang YH, Zhang JG. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513. https://doi.org/10.1039/C3EE40795K.

    Article  CAS  Google Scholar 

  2. Aurbach D, Markevich E, Salitra G. High energy density rechargeable batteries based on li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents. J Am Chem Soc. 2021;143(50):21161. https://doi.org/10.1021/jacs.1c11315.

    Article  CAS  PubMed  Google Scholar 

  3. Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2(5):833. https://doi.org/10.1016/j.joule.2018.03.008.

    Article  CAS  Google Scholar 

  4. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zhang X, Sun C. Recent advances in dendrite-free lithium metal anodes for high-performance batteries. Chem Chem Phys. 2022;24(34):19996. https://doi.org/10.1039/D2CP01655A.

    Article  CAS  Google Scholar 

  6. Zhang LS, Gao XL, Liu XH, Zhang ZJ, Cao R, Cheng HC, Wang MY, Yan XY, Yang SC. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 2022;41(5):1477. https://doi.org/10.1007/s12598-021-01925-8.

    Article  CAS  Google Scholar 

  7. Li M, Cheng LL, Yang YM, Niu F, Zhang X, Liu DH. Development of technology for spent lithium-ion batteries recycling: a review. Chin J Rare Met. 2022;46(3):349. https://doi.org/10.13373/j.cnki.cjrm.XY20020020.

    Article  Google Scholar 

  8. Kim J-S, Yoon G, Kim S, Sugata S, Yashiro N, Suzuki S, Lee MJ, Kim R, Badding M, Song Z, Chang J, Im D. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat Commun. 2023;14(1):782. https://doi.org/10.1038/s41467-023-36401-7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Gao XL, Liu XH, Xie WL, Zhang LS, Yang SC. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021;40(11):3038. https://doi.org/10.1007/s12598-021-01730-3.

    Article  CAS  Google Scholar 

  10. Liu Y, Xu X, Kapitanova OO, Evdokimov PV, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv Energy Mater. 2022;12(9):2103589. https://doi.org/10.1002/aenm.202103589.

    Article  CAS  Google Scholar 

  11. Xu X, Liu Y, Kapitanova OO, Song Z, Sun J, Xiong S. Electro-chemo-mechanical failure of solid electrolytes induced by growth of internal lithium filaments. Adv Mater. 2022;34(49):2207232. https://doi.org/10.1002/adma.202207232.

    Article  CAS  Google Scholar 

  12. Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961. https://doi.org/10.1038/nmat4041.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3(1):57. https://doi.org/10.1016/j.matt.2020.03.015.

    Article  Google Scholar 

  14. Wang C, Kim JT, Wang C, Sun X. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv Mater. 2023;35(19):2209074. https://doi.org/10.1002/adma.202209074.

    Article  CAS  Google Scholar 

  15. Liu Y, Meng X, Wang Z, Qiu J. A Li2S-based all-solid-state battery with high energy and superior safety. Sci Adv. 2022;8(1):eabl8390. https://doi.org/10.1126/sciadv.abl8390.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Li Q, Sun X, Cao D, Wang Y, Luan P, Zhu H. Versatile electrospinning for structural designs and ionic conductor orientation in all-solid-state lithium batteries. Electrochem Energy Rev. 2022;5(4):18. https://doi.org/10.1007/s41918-022-00170-6.

    Article  CAS  Google Scholar 

  17. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363. https://doi.org/10.1016/j.nanoen.2017.01.028.

    Article  CAS  Google Scholar 

  18. Gao Y, Cui BF, Wang JJ, Sun ZY, Chen Q, Deng YD, Han XP, Hu WB. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene. Rare Met. 2022;41(10):3391. https://doi.org/10.1007/s12598-022-02044-8.

  19. Wang T, Lu L, Sun C. A long life solid-state lithium-oxygen battery enabled by a durable oxygen deficient flower-like CeO2 microsphere based solid electrolyte. Inorg Chem Front. 2022;9(11):2508. https://doi.org/10.1039/D2QI00508E.

    Article  CAS  Google Scholar 

  20. Wang Z, Shen L, Deng S, Cui P, Yao X. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021;33(25):2100353. https://doi.org/10.1002/adma.202100353.

    Article  CAS  Google Scholar 

  21. Zhang Z, Wang J, Jin Y, Liu G, Yang S, Yao X. Insights on lithium plating behavior in graphite-based all-solid-state lithium-ion batteries. Energy Storage Mater. 2023;54:845. https://doi.org/10.1016/j.ensm.2022.11.023.

    Article  Google Scholar 

  22. Wei C, Yu C, Wang R, Peng L, Chen S, Miao X, Cheng S, Xie J. Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J Power Sources. 2023;559:232659. https://doi.org/10.1016/j.jpowsour.2023.232659.

    Article  CAS  Google Scholar 

  23. Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko DS, Shiratsuchi T, Sugimoto T, Ryu S, Ku JH, Watanabe T, Park Y, Aihara Y, Im D, Han IT. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy. 2020;5(4):299. https://doi.org/10.1038/s41560-020-0575-z.

    Article  CAS  ADS  Google Scholar 

  24. Hu Z, Wang C, Wang C, Chen B, Yang C, Dong S, Cui G. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InfoMat. 2022;4(3):e12249. https://doi.org/10.1002/inf2.12249.

    Article  CAS  Google Scholar 

  25. Zhao X, Xiang P, Wu J, Liu Z, Shen L, Liu G, Tian Z, Chen L, Yao X. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries. Nano Lett. 2023;23(1):227. https://doi.org/10.1021/acs.nanolett.2c04140.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Chi X, Li M, Di J, Bai P, Song L, Wang X, Li F, Liang S, Xu J, Yu J. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature. 2021;592(7855):551. https://doi.org/10.1038/s41586-021-03410-9.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Kim SH, Choe UJ, Kim NY, Lee SY. Fibrous skeleton-framed, flexible high-energy-density quasi-solid-state lithium metal batteries. Battery Energy. 2022;1(1):20210012. https://doi.org/10.1002/bte2.20210012.

    Article  CAS  Google Scholar 

  28. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem. 2019;5(9):2326. https://doi.org/10.1016/j.chempr.2019.05.009.

    Article  CAS  Google Scholar 

  29. Castillo J, Santiago A, Judez X, Garbayo I, Coca Clemente JA, Morant-Miñana MC, Villaverde A, González-Marcos JA, Zhang H, Armand M, Li C. Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem Mater. 2021;33(22):8812. https://doi.org/10.1021/acs.chemmater.1c02952.

    Article  CAS  Google Scholar 

  30. Yi Q, Zhang W, Wang T, Han J, Sun C. A high-performance lithium metal battery with a multilayer hybrid electrolyte. Energy Environ Mater. 2023;6(1):e12289. https://doi.org/10.1002/eem2.12289.

    Article  CAS  Google Scholar 

  31. Chang Z, Yang H, Zhu X, He P, Zhou H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat Commun. 2022;13(1):1510. https://doi.org/10.1038/s41467-022-29118-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan C-W, Shen Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc. 2017;139(39):13779. https://doi.org/10.1021/jacs.7b06364.

    Article  CAS  PubMed  Google Scholar 

  33. Marshall JE, Zhenova A, Roberts S, Petchey T, Zhu P, Dancer CEJ, McElroy CR, Kendrick E, Goodship V. On the solubility and stability of polyvinylidene fluoride. Polymers. 2021;13(9):1354. https://doi.org/10.3390/polym13091354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Q, Liu R, Cui Y, Zhou M, Zeng J, Zheng B, Liu S, Zhu Y, Wu D. Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2d shield-defensive, and single lithium-ion conducting polymeric membrane. Adv Mater. 2022;34(33):2108437. https://doi.org/10.1002/adma.202108437.

    Article  CAS  Google Scholar 

  35. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029. https://doi.org/10.1002/adma.201902029.

    Article  CAS  Google Scholar 

  36. Zhao X, Wang C, Liu H, Liang Y, Fan L-Z. A review of polymer-based solid-state electrolytes for lithium-metal batteries: structure, kinetic, interface stability, and application. Batter Supercaps. 2023;6(4):e202200502. https://doi.org/10.1002/batt.202200502.

    Article  CAS  Google Scholar 

  37. Shim J, Lee JS, Lee JH, Kim HJ, Lee J-C. Gel polymer electrolytes containing anion-trapping boron moieties for lithium-ion battery applications. ACS Appl Mater Interfaces. 2016;8(41):27740. https://doi.org/10.1021/acsami.6b09601.

    Article  CAS  PubMed  Google Scholar 

  38. Meringolo C, Mastropietro TF, Poerio T, Fontananova E, De Filpo G, Curcio E, Di Profio G. Tailoring PVDF membranes surface topography and hydrophobicity by a sustainable two-steps phase separation process. ACS Sustain Chem Eng. 2018;6(8):10069. https://doi.org/10.1021/acssuschemeng.8b01407.

    Article  CAS  Google Scholar 

  39. Feng J, Wang L, Chen Y, Wang P, Zhang H, He X. PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 2021;8(1):2. https://doi.org/10.1186/s40580-020-00252-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Méricq J-P, Mendret J, Brosillon S, Faur C. High performance PVDF-TiO2 membranes for water treatment. Chem Eng Sci. 2015;123:283. https://doi.org/10.1016/j.ces.2014.10.047.

    Article  CAS  Google Scholar 

  41. Wu D, Deng L, Sun Y, Teh KS, Shi C, Tan Q, Zhao J, Sun D, Lin L. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv. 2017;7(39):24410. https://doi.org/10.1039/C7RA02681A.

    Article  CAS  ADS  Google Scholar 

  42. Solarajan AK, Murugadoss V, Angaiah S. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep. 2017;7(1):45390. https://doi.org/10.1038/srep45390.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Liu L, Sun C. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem. 2020;7(3):707. https://doi.org/10.1002/celc.201902032.

    Article  CAS  Google Scholar 

  44. Xu F, Deng S, Guo Q, Zhou D, Yao X. Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2|| Li batteries with rigid-flexible coupling interphase. Small Methods. 2021;5(7):2100262.

    Article  CAS  Google Scholar 

  45. Huang X, Zeng S, Liu J, He T, Sun L, Xu D, Yu X, Luo Y, Zhou W, Wu J. High-performance electrospun poly(vinylidene fluoride)/poly(propylene carbonate) gel polymer electrolyte for lithium-ion batteries. J Phys Chem C. 2015;119(50):27882. https://doi.org/10.1021/acs.jpcc.5b09130.

    Article  CAS  Google Scholar 

  46. Hsu C-Y, Liu R-J, Hsu C-H, Kuo P-L. High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv. 2016;6(22):18082. https://doi.org/10.1039/C5RA26345J.

    Article  CAS  ADS  Google Scholar 

  47. Liu C, Hu J, Zhu Y, Yang Y, Li Y, Wu Q-H. Quasi-solid-state polymer electrolyte based on electrospun polyacrylonitrile/polysilsesquioxane composite nanofiber membrane for high-performance lithium batteries. Materials. 2022;15(21):7527. https://doi.org/10.3390/ma15217527.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Venkatesan S, Liu I-P, Lin J-C, Tsai M-H, Teng H, Lee Y-L. Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes. J Mater Chem A. 2018;6(21):10085. https://doi.org/10.1039/C8TA01729H.

    Article  CAS  Google Scholar 

  49. Zhong H, Wang C, Xu Z, Ding F, Liu X. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries. Sci Rep. 2016;6(1):25484. https://doi.org/10.1038/srep25484.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Gao J, Yang Y, Zhang Z, Yan J, Lin Z, Guo X. Bifacial quasi-solid-state dye-sensitized solar cells with Poly (vinyl pyrrolidone)/polyaniline transparent counter electrode. Nano Energy. 2016;26:123. https://doi.org/10.1016/j.nanoen.2016.05.010.

    Article  CAS  Google Scholar 

  51. Tiantian Dong PM. How do polymer binders assist transition metal oxide cathodes to address the challenge of high-voltage lithium battery applications? Electrochem. Energy Rev. 2022;4(3):545. https://doi.org/10.1007/s41918-021-00102-w.

    Article  CAS  Google Scholar 

  52. Gao L, Li J, Ju J, Wang L, Yan J, Cheng B, Kang W, Deng N, Li Y. Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem Eng J. 2020;389:124478. https://doi.org/10.1016/j.cej.2020.124478.

    Article  CAS  Google Scholar 

  53. Balart R, Montanes N, Dominici F, Boronat T, Torres-Giner S. Environmentally friendly polymers and polymer composites. Materials. 2020;13(21):4892. https://doi.org/10.3390/ma13214892.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Lv J, Zhang G, Zhang H, Zhao C, Yang F. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci. 2018;440:1091. https://doi.org/10.1016/j.apsusc.2018.01.256.

    Article  CAS  ADS  Google Scholar 

  55. Zuo X, Ma X, Wu J, Deng X, Xiao X, Liu J, Nan J. Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochim Acta. 2018;271:582. https://doi.org/10.1016/j.electacta.2018.03.195.

    Article  CAS  Google Scholar 

  56. Sun S, Huang Y, Sun R, Tu M. The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem. 2016;18(15):4276. https://doi.org/10.1039/C6GC00685J.

    Article  CAS  Google Scholar 

  57. Pietruś W, Kafel R, Bojarski AJ, Kurczab R. Hydrogen bonds with fluorine in ligand-protein complexes-the PDB analysis and energy calculations. Molecules. 2022;27(3):1005. https://doi.org/10.3390/molecules27031005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mishra PK, Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials. 2019;9(2):243. https://doi.org/10.3390/nano9020243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian H, Ren H, Zhang Y, He X, Li W, Wang J, Hu J, Yang H, Sari HMK, Chen Y, Li X. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem Energy Rev. 2022;5(4):2. https://doi.org/10.1007/s41918-022-00155-5.

    Article  CAS  Google Scholar 

  60. Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira MR. A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability. 2021;13(5):2697. https://doi.org/10.3390/su13052697.

    Article  CAS  Google Scholar 

  61. Gao S, Sun F, Liu N, Yang H, Cao P–F. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – a review. Mater Today. 2020;40:140. https://doi.org/10.1016/j.mattod.2020.06.011.

    Article  CAS  Google Scholar 

  62. Wang F, Evans HA, Kim K, Yin L, Li Y, Tsai P-C, Liu J, Lapidus SH, Brown CM, Siegel DJ, Chiang Y-M. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl. Chem Mater. 2020;32(19):8481. https://doi.org/10.1021/acs.chemmater.0c02602.

    Article  CAS  Google Scholar 

  63. Wang X, Shen X, Zhang P, Zhou AJ, Zhao JB. Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 2022;42(3):875. https://doi.org/10.1007/s12598-022-02218-4.

    Article  CAS  Google Scholar 

  64. Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, Pons A, Mathias J-D, Callois J-M, Vial C, Michaud P, Dussap C-G. Wood-lignin: Supply, extraction processes and use as bio-based material. Eur Polym J. 2019;112:228. https://doi.org/10.1016/j.eurpolymj.2019.01.007.

    Article  CAS  Google Scholar 

  65. Liu J, Yuan H, Tao X, Liang Y, Yang SJ, Huang J-Q, Yuan T-Q, Titirici M-M, Zhang Q. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat. 2020;2(1):e12019. https://doi.org/10.1002/eom2.12019.

    Article  CAS  Google Scholar 

  66. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382. https://doi.org/10.1039/C7RA01267E.

    Article  CAS  ADS  Google Scholar 

  67. Benhabiles O, Galiano F, Marino T, Mahmoudi H, Lounici H, Figoli A. Preparation and characterization of TiO2-PVDF/PMMA blend membranes using an alternative non-toxic solvent for UF/MF and photocatalytic application. Molecules. 2019;24(4):724. https://doi.org/10.3390/molecules24040724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gonultas O, Candan Z, Gonultas O, Candan Z. Chemical characterization and FTIR spectroscopy of thermally compressed eucalyptus wood panels. Maderas Cienc Tecnol. 2018;20(3):431. https://doi.org/10.4067/S0718-221X2018005031301.

    Article  CAS  Google Scholar 

  69. Cha E, Yun JH, Ponraj R, Kim DK. A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Mater Chem Front. 2021;5(17):6294. https://doi.org/10.1039/D1QM00579K.

    Article  CAS  Google Scholar 

  70. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540. https://doi.org/10.1038/s41560-019-0405-3.

    Article  ADS  Google Scholar 

  71. Liang FW, Xia YH, Zhang YL, Zhao SP, Yang SC, Liu XH. Lithium plating mechanism, model and fast charging strategy of lithium-ion batteries under fast charging condition. Chin J Rare Met. 2022;46(9):1235. https://doi.org/10.13373/j.cnki.cjrm.XY21030007.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 22208039), the Basic Scientific Research Project of the Educational Department of Liaoning Province (No. LJKMZ20220878), the Dalian Science and Technology Talent Innovation Support Plan (No. 2022RQ036) and Dalian Polytechnic University (No. 222002023044, No. 6102072202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Jie Gao or Run-Cang Sun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 444 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XY., Gao, XJ., Wu, HY. et al. Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery. Rare Met. 43, 1006–1016 (2024). https://doi.org/10.1007/s12598-023-02444-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02444-4

Keywords

Navigation