Skip to main content
Log in

One-step construction of strongly coupled Co3V2O8/Co3O4/MXene heterostructure via in-situ Co-F bonds for high performance all-solid-state asymmetric supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Co3V2O8/Co3O4/Ti3C2Tx composite was easily synthesized via one-step succinct-operated hydrothermal process. The interconnected Co3V2O8/Co3O4 nanowires network can in-situ grow and anchor on the surface of Ti3C2Tx via the strong Co-F bonds and contribute tremendously to depress Ti3C2Tx self-restacking. Profiting from the synergistically interplayed effect among the multiple interfaces and high conductivity of Ti3C2Tx as well as outstanding stability of the as-designed nanostructure, the optimum Co3V2O8/Co3O4/Ti3C2Tx electrode reaches a commendable specific capacitance (up to 3800 mF·cm−2), great rate capability (80% capacitance retention after 20-times current increasing), and preeminent cycling stability (95.4%/85.5% retention at 7000th/20,000th cycle). Moreover, the all-solid-state asymmetric supercapacitor based on Co3V2O8/Co3O4/Ti3C2Tx and active carbon can deliver a high energy density of 84.0 μWh·cm 2 at the power energy of 3.2 mW·cm−2, and excellent cycling durability with 87.0% of initial capacitance retention upon 20,000 loops. This work provides a practicable pathway to tailor MXene-based composites for high-performance supercapacitor.

Graphical abstract

摘要

通过一步简便操作的水热工艺成功合成Co3V2O8/Co3O4/Ti3C2Tx复合材料。相互连接的Co3V2O8/Co3O4纳米线网络可以通过强Co-F键原位生长并锚定在Ti3C2Tx表面,并极大地抑制了Ti3C2Tx的自堆叠。得益于多重界面和Ti3C2Tx的高电导率以及所设计的纳米结构的稳定性,优化的Co3V2O8/Co3O4/Ti3C2Tx电极表现出优异的比容量(高达3800 mF·cm−2),良好的倍率性能(电流密度增加20倍时初始容量保留80%),和卓越的循环稳定性(第7000/20000次循环初始容量保留率分别为95.4%/85.5%)。此外,基于Co3V2O8/Co3O4/Ti3C2Tx和活性碳所构建的全固态不对称超级电容器可以在3.2 mW·cm−2的功率密度下提供84.0 μWh·cm−2的能量密度,并且展现出优异循环耐久性,在连续循环20000次后初始容量保留率为87.0%。本文为MXene基复合材料的高性能超级电容器提供了一条切实可行的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gu JW, Peng Y, Zhou T, Ma J, Pang H, Yamauchi Y. Porphyrin-based framework materials for energy conversion. Nano Res Energy. 2022;1:9120009. https://doi.org/10.26599/NRE.2022.9120009.

    Article  Google Scholar 

  2. Yang YX, Ge KK, Ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 2022;41(12):3957. https://doi.org/10.1007/s12598-022-02091-1.

    Article  CAS  Google Scholar 

  3. Zhang YN, Su CY, Chen JL, Huang WH, Lou R. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 2022;42(3):769. https://doi.org/10.1007/s12598-022-02142-7.

    Article  CAS  Google Scholar 

  4. Xia Q, Xia T, Wu X. PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Met. 2022;41(4):1195. https://doi.org/10.1007/s12598-021-01880-4.

    Article  CAS  Google Scholar 

  5. Li PX, Guan GZ, Shi X, Lu L, Fan YC, Xu J, Shang YY, Zhang YJ, Wei JQ, Guo FM. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 2023;42(4):1249. https://doi.org/10.1007/s12598-022-02189-6.

    Article  CAS  Google Scholar 

  6. Li QL, Cao JX, Zhang Q. Tuning mechanism of reduced-graphene oxide content on electrochemical performance of MXene/reduced-graphene oxide-based supercapacitors. Chin J Rare Met. 2022;46(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY21040042.

    Article  Google Scholar 

  7. Wang KB, Xun Q, Zhang QC. Recent progress in metal-organic frameworks as active materials for supercapacitors. Energy Chem. 2020;2(1):100025. https://doi.org/10.1016/j.enchem.2019.100025.

    Article  CAS  Google Scholar 

  8. Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater. 2020;32(51):2002180. https://doi.org/10.1002/adma.202002180.

    Article  CAS  Google Scholar 

  9. Wang G, Yan Z, Ding Y, Xu Z, Li Z. Hierarchical core-shell nickel hydroxide@nitrogen-doped hollow carbon spheres composite for high-performance hybrid supercapacitor. J Colloid Interf Sci. 2022;628:286. https://doi.org/10.1016/j.jcis.2022.08.057.

    Article  CAS  Google Scholar 

  10. Zhou M, Yan SX, Wang Q, Tan MX, Wang DY, Yu ZQ, Luo SH, Zhang YH, Liu X. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met. 2022;41(7):2280. https://doi.org/10.1007/s12598-021-01957-0.

    Article  CAS  Google Scholar 

  11. Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. 2020;49(18):6666. https://doi.org/10.1039/D0CS00175A.

    Article  CAS  Google Scholar 

  12. Wang MJ, Cheng YF, Zhang HY, Cheng F, Wang YX, Huang T, Wei ZC, Zhang YH, Ge BH, Ma YN, Yue Y, Gao YH. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202211199.

    Article  Google Scholar 

  13. Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson POÅ, Eklund P, Hultman L, Li M, Chen K, Zha XH, Du S, Rozier P, Chai Z, Raymundo-Piñero E, Taberna PL, Simon P, Huang Q. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894. https://doi.org/10.1038/s41563-020-0657-0.

    Article  CAS  Google Scholar 

  14. Wang ML, Feng SX, Bai C, Ji K, Zhang JX, Wang SL, Lu YQ, Kong DS. Ultrastretchable MXene microsupercapacitors. Small. 2023;19(21):2300386. https://doi.org/10.1002/smll.202300386.

    Article  CAS  Google Scholar 

  15. Shi H, Yue M, Zhang CJ, Dong Y, Lu P, Zheng S, Huang H, Chen J, Wen P, Xu Z, Zheng Q, Li X, Yu Y, Wu ZS. 3D Flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano. 2020;14(7):8678. https://doi.org/10.1021/acsnano.0c03042.

    Article  CAS  Google Scholar 

  16. Li K, Li J, Zhu Q, Xu B. Three-dimensional MXenes for supercapacitors: a review. Small Methods. 2022;6(4):2101537. https://doi.org/10.1002/smtd.202101537.

    Article  CAS  Google Scholar 

  17. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Edit. 2022;61(11):e202116282. https://doi.org/10.1002/anie.202116282.

    Article  CAS  Google Scholar 

  18. Chen TT, Wang FF, Cao S, Bai Y, Zheng SS, Li WT, Zhang ST, Hu SX, Pang H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel–zinc batteries. Adv Mater. 2022;34(30):2201779. https://doi.org/10.1002/adma.202201779.

    Article  CAS  Google Scholar 

  19. Zhao YB, Wang XY, Li H, Qian BZ, Zhang Y, Wu Y. Synthesis of Co3O4 nanospheres for enhanced photo-assisted supercapacitor. Chem Eng J. 2022;431:133981. https://doi.org/10.1016/j.cej.2021.133981.

    Article  CAS  Google Scholar 

  20. Zheng SS, Li Q, Xue HG, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2020;7(2):305. https://doi.org/10.1093/nsr/nwz137.

    Article  CAS  Google Scholar 

  21. Tao Y, Wu Y, Chen H, Chen W, Wang J, Tong Y, Pei G, Shen Z, Guan C. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem Eng J. 2020;396:125364. https://doi.org/10.1016/j.cej.2020.125364.

    Article  CAS  Google Scholar 

  22. Sekhar SC, Ramulu B, Narsimulu D, Arbaz SJ, Yu JS. Metal–organic framework-derived Co3V2O8@CuV2O6 hybrid architecture as a multifunctional binder-free electrode for Li-ion batteries and hybrid supercapacitors. Small. 2020;16(48):2003983. https://doi.org/10.1002/smll.202003983.

    Article  CAS  Google Scholar 

  23. Fahimi Z, Moradlou O, Sabbah A, Chen KH, Chen LC, Qorbani M. Co3V2O8 hollow spheres with mesoporous walls as high-capacitance electrode for hybrid supercapacitor device. Chem Eng J. 2022;436:135225. https://doi.org/10.1016/j.cej.2022.135225.

    Article  CAS  Google Scholar 

  24. Zhou J, Liu BB, Zhang LN, Li Q, Xu CX, Liu H. MXene driven in-situ construction of hollow core-shelled Co3V2O8@Ti3C2Tx nanospheres for high performance all-solid-state asymmetric supercapacitors. J Mater Chem A. 2022;10(46):24896. https://doi.org/10.1039/D2TA06579G.

    Article  CAS  Google Scholar 

  25. Li N, Han J, Yao K, Han M, Wang Z, Liu Y, Liu L, Liang H. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution. J Mater Sci Technol. 2022;106:90. https://doi.org/10.1016/j.jmst.2021.08.007.

    Article  CAS  Google Scholar 

  26. Ma Y, Sheng H, Dou W, Su Q, Zhou J, Xie E, Lan W. Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance. ACS Appl Mater Interfaces. 2020;12(37):41410. https://doi.org/10.1021/acsami.0c11034.

    Article  CAS  Google Scholar 

  27. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater. 2017;27(30):1701264. https://doi.org/10.1002/adfm.201701264.

    Article  CAS  Google Scholar 

  28. Yu L, Li W, Wei C, Yang Q, Shao Y, Sun J. 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 2020;12(1):143. https://doi.org/10.1007/s40820-020-00483-5.

    Article  CAS  Google Scholar 

  29. Li Y, Kong L, Liu M, Zhang W, Kang L. The design and fabrication of Co3O4/Co3V2O8/Ni nanocomposites as high-performance anodes for Li-ion batteries. J Energy Chem. 2017;26(3):494. https://doi.org/10.1016/j.jechem.2016.11.017.

    Article  Google Scholar 

  30. Lu Y, Yu L, Wu MH, Wang Y, Lou XW. Construction of complex Co3O4@Co3V2O8 hollow structures from metal–organic frameworks with enhanced lithium storage properties. Adv Mater. 2018;30(1):1702875. https://doi.org/10.1002/adma.201702875.

    Article  CAS  Google Scholar 

  31. Zhang J, Yuan B, Cui S, Zhang N, Wei J, Wang X, Zhang D, Zhang R, Huo Q. Facile synthesis of 3D porous Co3V2O8 nanoroses and 2D NiCo2V2O8 nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties. Dalton T. 2017;46(10):3295. https://doi.org/10.1039/C7DT00435D.

    Article  CAS  Google Scholar 

  32. Huang B, Wang WS, Pu T, Li J, Zhao CL, Xie L, Chen LY. Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors. Chem Eng J. 2019;375:121969. https://doi.org/10.1016/j.cej.2019.121969.

    Article  CAS  Google Scholar 

  33. Chai H, Wang Y, Fang Y, Lv Y, Dong H, Jia D, Zhou W. Low-cost synthesis of hierarchical Co3V2O8 microspheres as high-performance anode materials for lithium-ion batteries. Chem Eng J. 2017;326:587. https://doi.org/10.1016/j.cej.2017.05.162.

    Article  CAS  Google Scholar 

  34. Wang WD, Jiang DM, Chen X, Xie K, Jiang YH, Wang YQ. A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors. Appl Surf Sci. 2020;515:145982. https://doi.org/10.1016/j.apsusc.2020.145982.

    Article  CAS  Google Scholar 

  35. Xu L, Jiang QQ, Xiao ZH, Li XY, Huo J, Wang SY, Dai LM. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Edit. 2016;128(17):5363. https://doi.org/10.1002/ange.201600687.

    Article  Google Scholar 

  36. Lei H, Tan S, Ma L, Liu Y, Liang Y, Javed MS, Wang Z, Zhu Z, Mai W. Strongly coupled NiCo2O4 nanocrystal/MXene hybrid through in situ Ni/Co–F bonds for efficient wearable Zn–air batteries. ACS Appl Mater Interfaces. 2020;12(40):44639. https://doi.org/10.1021/acsami.0c11185.

    Article  CAS  Google Scholar 

  37. He XY, Li RM, Liu JY, Liu Q, Chen RR, Song DL, Wang J. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem Eng J. 2018;334:1573. https://doi.org/10.1016/j.cej.2017.11.089.

    Article  CAS  Google Scholar 

  38. Liu BB, Hou JG, Zhang T, Xu CX, Liu H. A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J Mater Chem A. 2019;7(27):16222. https://doi.org/10.1039/C9TA03324F.

    Article  CAS  Google Scholar 

  39. Liu BB, Zhang QH, Zhang LN, Xu CX, Pan ZH, Zhou QX, Zhou WJ, Wang J, Gu L, Liu H. Electrochemically exfoliated chlorine-doped graphene for flexible all-solid-state micro-supercapacitors with high volumetric energy density. Adv Mater. 2022;34(19):2106309. https://doi.org/10.1002/adma.202106309.

    Article  CAS  Google Scholar 

  40. Zhao Y, Wang Y, Huang Y, Liu W, Hu J, Zheng J, Wu L. Nickel carbonate hydroxide-based core-triple-shelled nanofibers with ultrahigh specific capacity for flexible hybrid supercapacitors. J Colloid Interf Sci. 2023;630:444. https://doi.org/10.1016/j.jcis.2022.10.128.

    Article  CAS  Google Scholar 

  41. Sharma GP, Gupta PK, Sharma SK, Pala RGS, Sivakumar S. Chalcogenide dopant-induced lattice expansion in cobalt vanadium oxide nanosheets for enhanced supercapacitor performance. ACS Appl Energ Mater. 2021;4(5):4758. https://doi.org/10.1021/acsaem.1c00357.

    Article  CAS  Google Scholar 

  42. Liu X, Wang J, Yang G. In situ growth of the Ni3V2O8@PANI composite electrode for flexible and transparent symmetric supercapacitors. ACS Appl Mater Interfaces. 2018;10(24):20688. https://doi.org/10.1021/acsami.8b04609.

    Article  CAS  Google Scholar 

  43. Zhang C, McKeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileáin CÓ, McEvoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun. 2019;10(1):1795. https://doi.org/10.1038/s41467-019-09398-1.

    Article  CAS  Google Scholar 

  44. Yun J, Echols I, Flouda P, Chen Y, Wang S, Zhao X, Holta D, Radovic M, Green MJ, Naraghi M, Lutkenhaus JL. Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl Mater Interfaces. 2021;13(12):14068. https://doi.org/10.1021/acsami.0c19619.

    Article  CAS  Google Scholar 

  45. Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater. 2018;8(13):1703043. https://doi.org/10.1002/aenm.201703043.

    Article  CAS  Google Scholar 

  46. Bai Y, Liu C, Chen T, Li W, Zheng S, Pi Y, Luo Y, Pang H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Edit. 2021;60(48):25318. https://doi.org/10.1002/anie.202112381.

    Article  CAS  Google Scholar 

  47. Zhao KX, Wang HR, Zhu CC, Lin SY, Xu ZK, Zhang XT. Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochim Acta. 2019;308:1. https://doi.org/10.1016/j.electacta.2019.03.225.

    Article  CAS  Google Scholar 

  48. Ji YJ, Deng YL, Chen F, Wang ZQ, Lin YZ, Guan ZH. Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitors. Carbon. 2020;156:359. https://doi.org/10.1016/j.carbon.2019.09.064.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Science Foundation of China (No. 52201254), the National Science Foundation of Shandong Province (Nos. ZR2020MB090 and ZR2020QE012), the Project of “20 Items of University” of Jinan (No.202228046), and Taishan Scholar Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Li or Cai-Xia Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3263 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, BB., Zheng, H. et al. One-step construction of strongly coupled Co3V2O8/Co3O4/MXene heterostructure via in-situ Co-F bonds for high performance all-solid-state asymmetric supercapacitors. Rare Met. 43, 682–691 (2024). https://doi.org/10.1007/s12598-023-02442-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02442-6

Keywords

Navigation