Skip to main content
Log in

Lithium-induced graphene layer containing Li3P alloy phase to achieve ultra-stable electrode interface for lithium metal anode

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Uncontrolled growth of lithium dendrite will lead to low Coulombic efficiency and poor cycle stability, which hinders the commercialization of lithium metal batteries. Herein, a novel modified lithium anode with reduced graphene oxide conductive network containing trace lithiophilic phosphorus (P-rGO/Cu) is prepared by electrospraying technique combined with heat treatment process. The rGO layer has a concave and undulating conductive structure, which can significantly improve the effective electrical contact between lithium metal and the current collector, speed up the kinetics of interfacial electron transport and reaction, and improve the resistance of the negative electrode to the internal stress caused by volume change of the lithium, which is advantageous for the stability of the SEI film. The extremely small and uniformly distributed red phosphorus element avoids the volume change caused by lithiation to the maximum extent. Lithiophilic two-phase compound Li3P obtained by alloying P with Li can directionally induce the homogeneous nucleation and dense deposition of lithium metal, address the issue of lithium dendrites and extend the cycle life of the batteries. The obtained P-rGO/Cu exhibits excellent electrochemical performance with an average Coulombic efficiency (CE) of 98% at a current density of 1 mA·cm−2 for 400 cycles, and the capacity retention rate of the full cell matched with lithium iron phosphate (LFP) is 83% after 400 cycles at 1C.

Graphical abstract

摘要

锂枝晶的不受控生长会导致电池的库仑效率降低, 循环稳定性变差, 从而阻碍锂金属电池的商业化进程。本文采用电喷与热处理制得了亲锂微量磷元素夹杂分布的还原氧化石墨烯导电网络改性锂负极 (P-rGO/Cu) 。研究表明rGO层凹凸起伏的导电结构显著增强金属锂与集流体间有效电接触, 加速界面电子传输与反应动力学; 以及增强负极承受锂体积变化产生内应力的能力, 有利于SEI膜的稳定; 微量P元素引入rGO层避免了锂化带来的体积变化; 利用P与Li合金化得到的亲锂两相化合物Li3P对锂金属的均匀形核与致密沉积进行定向诱导, 解决了锂枝晶问题, 提升了锂电池循环寿命。得到的P-rGO/Cu锂负极表现出优异的电化学性能, 在1 mA·cm−2电流密度下循环400圈的平均库伦效率(CE) 高达98%, 匹配磷酸铁锂 (LFP) 的全电池1C(170 mA·g−1) 循环400圈后容量保持率为83%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2013;46(5):1053. https://doi.org/10.1021/ar2002705.

    Article  CAS  Google Scholar 

  2. Niu CJ, Pan HL, Xu W, Xiao J, Zhang JG, Luo L, Wang CM, Mei DH, Meng JS, Wang XP. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol. 2019;14(6):594. https://doi.org/10.1038/s41565-019-0427-9.

    Article  CAS  Google Scholar 

  3. Grey CP, Tarascon JM. Sustainability and in situ monitoring in battery development. Nat Mater. 2017;16(1):45. https://doi.org/10.1038/nmat4777.

    Article  CAS  Google Scholar 

  4. Xu W, Wang JL, Ding F, Chen XL, Nasybulin E, Zhang YH, Zhang JG. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513. https://doi.org/10.1039/C3EE40795K.

    Article  CAS  Google Scholar 

  5. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403. https://doi.org/10.1021/acs.chemrev.7b00115.

    Article  CAS  Google Scholar 

  6. Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  Google Scholar 

  7. Fengwei L, Yuhua X, Yulong Z, Shupeng Z, Shichun Y, Xinhua L. Lithium plating mechanism, model and fast charging strategy of lithium-ion batteries under fast charging condition. Chin J Rare Met. 2022;46(9):1235.

    Google Scholar 

  8. Liu YD, Liu Q, Xin L, Liu YZ, Yang F, Stach EA, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy. 2017;2(7):1. https://doi.org/10.1038/nenergy.2017.83.

    Article  CAS  Google Scholar 

  9. Yang ZJ, Qin XY, Lin K, Cai QC, Han CP, Kang FY, Li BH. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion. Carbon. 2022;187:321. https://doi.org/10.1016/j.carbon.2021.10.065.

    Article  CAS  Google Scholar 

  10. Jiao SH, Zheng JM, Li QY, Li X, Engelhard MH, Cao RG, Zhang JG, Xu W. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule. 2018;2(1):110. https://doi.org/10.1016/j.joule.2017.10.007.

    Article  CAS  Google Scholar 

  11. Huang HF, Gui YN, Sun F, Liu ZJ, Ning HL, Wu C, Chen LB. In situ formed three-dimensional (3D) lithium–boron (Li–B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 2021;40(12):3494. https://doi.org/10.1007/s12598-021-01708-1.

    Article  CAS  Google Scholar 

  12. Yang ZJ, Song HF, Chen JX, Lin K, Cai QC, Li T, Zhao DH, Liu M, Qin XY, Kang FY, Li BH. Free-standing stable silicon-based anode with exceptional flexibility realized by a multifunctional structure design in multiple dimensions. ACS Appl Mater Interfaces. 2022;14(41):46439. https://doi.org/10.1021/acsami.2c09668.

    Article  CAS  Google Scholar 

  13. Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li YZ, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016. https://doi.org/10.1038/nenergy.2016.10.

    Article  Google Scholar 

  14. Kushima A, So KP, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant MZ, Li J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy. 2017;32:271. https://doi.org/10.1016/j.nanoen.2016.12.001.

    Article  CAS  Google Scholar 

  15. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167. https://doi.org/10.1021/ja3091438.

    Article  CAS  Google Scholar 

  16. Zheng JM, Engelhard MH, Mei DH, Jiao SH, Polzin BJ, Zhang JG, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017;2(3):1. https://doi.org/10.1038/nenergy.2017.12.

    Article  CAS  Google Scholar 

  17. Lu YY, Tu ZY, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961. https://doi.org/10.1038/nmat4041.

    Article  CAS  Google Scholar 

  18. Liu W, Xia YT, Wang WW, Wang YZ, Jin JL, Chen YG, Paek E, Mitlin D. Pristine or highly defective? Understanding the role of graphene structure for stable lithium metal plating. Adv Energy Mater. 2019;9(3):1802918. https://doi.org/10.1002/aenm.201802918.

    Article  CAS  Google Scholar 

  19. Zheng GY, Lee SW, Liang Z, Lee HW, Yan K, Yao HB, Wang HT, Li WY, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(8):618. https://doi.org/10.1038/nnano.2014.152.

    Article  CAS  Google Scholar 

  20. Yan K, Lee HW, Gao T, Zheng GY, Yao HB, Wang HT, Lu ZD, Zhou Y, Liang Z, Liu ZF, Chu S, Cui Y. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014;14(10):6016. https://doi.org/10.1021/nl503125u.

    Article  CAS  Google Scholar 

  21. Liu YY, Lin DC, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat commun. 2016;7(1):1. https://doi.org/10.1038/ncomms10992.

    Article  CAS  Google Scholar 

  22. Huang ZM, Ren J, Zhang W, Xie ML, Li YK, Sun D, Shen Y, Huang YH. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv Mater. 2018;30(39):1803270. https://doi.org/10.1002/adma.201803270.

    Article  CAS  Google Scholar 

  23. Li L, Basu S, Wang YP, Chen ZZ, Hundekar P, Wang BW, Shi J, Shi YF, Narayanan S, Koratkar N. Self-heating-induced healing of lithium dendrites. Science. 2018;359(6383):1513. https://doi.org/10.1126/science.aap8787.

    Article  CAS  Google Scholar 

  24. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449. https://doi.org/10.1007/s12598-018-1049-3.

    Article  CAS  Google Scholar 

  25. Yang QY, Yu Z, Li Y, Zhang W, Yuan HW, Li HJ, MaZhu WSM, Li S. Understanding and modifications on lithium deposition in lithium metal batteries. Rare Met. 2022;41(8):2800. https://doi.org/10.1007/s12598-022-01994-3.

    Article  CAS  Google Scholar 

  26. Dudney NJ, Li JC. Using all energy in a battery. Science. 2015;347(6218):131. https://doi.org/10.1126/science.aaa2870.

    Article  CAS  Google Scholar 

  27. Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):1. https://doi.org/10.1038/natrevmats.2016.103.

    Article  CAS  Google Scholar 

  28. Li X, Deng SX, Banis MN, Doyle-Davis K, Zhang DX, Zhang TY, Yang J, Divigalpitiya R, Brandys F, Li RY, Sun XL. Suppressing corrosion of aluminum foils via highly conductive graphene-like carbon coating in high-performance lithium-based batteries. ACS Appl Mater Interfaces. 2019;11(36):32826. https://doi.org/10.1021/acsami.9b06442.

    Article  CAS  Google Scholar 

  29. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906. https://doi.org/10.1002/adma.201001068.

    Article  CAS  Google Scholar 

  30. Lin K, Qin XY, Liu M, Xu XF, Liang GM, Wu JX, Kang FY, Chen GH, Li BH. Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv Funct Mater. 2019;29(46):1903229. https://doi.org/10.1002/adfm.201903229.

    Article  CAS  Google Scholar 

  31. Lin K, Xu XF, Qin XY, Zhang GQ, Liu M, Lv FZ, Xia Y, Kang FY, Chen GH, Li BH. Restructured rimous copper foam as robust lithium host. Energy Stor Mater. 2020;26:250. https://doi.org/10.1016/j.ensm.2020.01.001.

    Article  Google Scholar 

  32. Miao G, Xiaoyu Z, Maodong L, Junlu Z, Guojia H, Yunyong L. Electrostatic self-assembly preparation of three-dimensional graphene coated red phosphorus for lithium-ion battery anode. Chin J Rare Met. 2022;46(8):1048.

    Google Scholar 

  33. Ye L, Zhang CY, Zhou Y, Ülgüt B, Zhao Y, Qian JF. Guided lithium nucleation and growth on lithiophilic tin-decorated copper substrate. J Energy Chem. 2022;74:412. https://doi.org/10.1016/j.jechem.2022.07.027.

    Article  CAS  Google Scholar 

  34. Qiu XG, Liu W, Liu JD, Li JZ, Zhang K, Cheng FY. Nucleation mechanism and substrate modification of lithium metal anode. Acta Phys Chim Sin. 2021;37(1):2009012. https://doi.org/10.3866/PKU.WHXB202009012.

    Article  CAS  Google Scholar 

  35. Lin DC, Liu YY, Liang Z, Lee HW, Sun J, Wang HT, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol. 2016;11(7):626. https://doi.org/10.1038/nnano.2016.32.

    Article  CAS  Google Scholar 

  36. Liu L, Yin YX, Li JY, Li NW, Zeng XX, Ye H, Guo YG, Wan LJ. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule. 2017;1(3):563. https://doi.org/10.1016/j.joule.2017.06.004.

    Article  CAS  Google Scholar 

  37. Ye H, Zheng ZJ, Yao HR, Liu SC, Zuo TT, Wu XW, Yin YX, Li NW, Gu JJ, Cao FF. Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angew Chem Int Ed. 2019;58(4):1094. https://doi.org/10.1002/anie.201811955.

    Article  CAS  Google Scholar 

  38. Chen L, Fan XL, Ji X, Chen J, Hou S, Wang CS. High-energy Li metal battery with lithiated host. Joule. 2019;3(3):732. https://doi.org/10.1016/j.joule.2018.11.025.

    Article  CAS  Google Scholar 

  39. Xia JH, Liu ZJ, Li D, Lu ZC, Zhou SX. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries. Rare Met. 2011;30(S1):48. https://doi.org/10.1007/s12598-011-0235-3.

    Article  CAS  Google Scholar 

  40. Jiao C, Sun HB, Zhang L, Zhao SQ, Pang GY, Zhao CR, Lu SG. A high-performance lithium anode based on N-doped composite graphene. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01263-w.

    Article  Google Scholar 

  41. Sun YM, Wang L, Li YB, Li YZ, Lee HR, Pei A, He XM, Cui Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule. 2019;3(4):1080. https://doi.org/10.1016/j.joule.2019.01.017.

    Article  CAS  Google Scholar 

  42. Sun J, Zheng GY, Lee HW, Liu N, Wang HT, Yao HB, Yang WS, Cui Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014;14(8):4573. https://doi.org/10.1021/nl501617j.

    Article  CAS  Google Scholar 

  43. Sun J, Lee HW, Pasta M, Yuan HT, Zheng GY, Sun YM, Li YZ, Cui Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol. 2015;10(11):980. https://doi.org/10.1038/nnano.2015.194.

    Article  CAS  Google Scholar 

  44. Nazri G. Preparation, structure and ionic conductivity of lithium phosphide. Solid State Ionics. 1989;34(1–2):97. https://doi.org/10.1016/0167-2738(89)90438-4.

    Article  CAS  Google Scholar 

  45. Kim MS, Ryu JH, Deepika LYR, Nah IW, Lee KR, Archer LA, Il Cho W. Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat Energy. 2018;3(10):889. https://doi.org/10.1038/s41560-018-0237-6.

    Article  CAS  Google Scholar 

  46. Zhang C, Lyu RY, Lv W, Li H, Jiang W, Li J, Gu SC, Zhou GM, Huang ZJ, Zhang YB, Wu JQ, Yang QH, Kang FY. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv Mater. 2019;31(48):1904991. https://doi.org/10.1002/adma.201904991.

    Article  CAS  Google Scholar 

  47. Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene. 2017;6(1):1. https://doi.org/10.4236/graphene.2017.61001.

    Article  CAS  Google Scholar 

  48. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science. 2016;353(6306):1413. https://doi.org/10.1016/j.cej.2022.140826.

    Article  CAS  Google Scholar 

  49. Bhaviripudi S, Jia XT, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010;10(10):4128. https://doi.org/10.1021/nl102355e.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B090919003), the National Natural Science Foundation of China (Nos. 52261160384, 51872157 and 52072208), the Fundamental Research Project of Shenzhen (No. JCYJ20190808153609561), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111) and the Support Plan for Shenzhen Manufacturing Innovation Center (No. 20200627215553988). Authors thank the Materials and Devices Testing Center of Tsinghua University Shenzhen International Graduate School (Tsinghua SIGS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Ying Qin or Bao-Hua Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1424 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JX., Zhang, GQ., Qin, XY. et al. Lithium-induced graphene layer containing Li3P alloy phase to achieve ultra-stable electrode interface for lithium metal anode. Rare Met. 43, 562–574 (2024). https://doi.org/10.1007/s12598-023-02433-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02433-7

Keywords

Navigation