Skip to main content
Log in

Tuning electronic structure of Pt to enhance ethanol electrooxidation performance of SnO2 patched ultrathin PtRhNi nanowires

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

发展能够用于乙醇氧化反应(EOR)且具有高效稳定特征的Pt基纳米催化剂对于直接乙醇燃料电池的商业化应用来说依然是一大挑战。本文主要介绍了一种通过两步合成法所得到的SnO2弥散分布超细PtRhM(M=Ni或Co)纳米线。由于具有较高的比表面积,高密度的表面欠配位活性位点以及Pt,Rh,SnO2三者间的协同效应等因素,该纳米线的EOR活性得到了明显的提升。需要注意的是,Ni的引入能够精细地调控Pt原子的电子结构,使得纳米线的活性和稳定性得到了进一步的提升。当纳米线中Ni的含量达到10.8 at%时,Pt原子具有最优的d带心位置,对应的SnO2弥散分布超细PtRhNi纳米线(PtRhNi@SnO2 NWs)表现出了所有纳米线中最高的质量活性(3.13 A·mgPt+Rh-1),该结果相较于商业Pt/C来说具有5倍的提升。本工作主要报道了PtRhNi@SnO2 NWs的可控合成,并强调了Pt原子电子结构的调控对其电化学活性影响的重要性。

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wang K, Du HY, Sriphathoorat R, Shen PK. Vertex-type engineering of Pt–Cu–Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv Mater. 2018;30(45):1804074. https://doi.org/10.1002/adma.201804074.

    Article  CAS  Google Scholar 

  2. Han SH, Liu HM, Chen P, Jiang JX, Chen Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv Energy Mater. 2018;8(24):1801326. https://doi.org/10.1002/aenm.201801326.

    Article  CAS  Google Scholar 

  3. Wang Y, Zou SZ, Cai WB. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials. Catalysts. 2015;5(3):1507. https://doi.org/10.3390/catal5031507.

    Article  CAS  Google Scholar 

  4. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater. 2009;8:325. https://doi.org/10.1038/nmat2359.

    Article  CAS  Google Scholar 

  5. Zheng Y, Wan XJ, Cheng X, Cheng K, Dai ZF, Liu ZH. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts. 2020;10(2):166. https://doi.org/10.3390/catal10020166.

    Article  CAS  Google Scholar 

  6. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren YL, Xu CL, Zhang ZZ. Extraordinary p–d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C−C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed. 2022;61(16):e202200899. https://doi.org/10.1002/anie.202200899.

    Article  CAS  Google Scholar 

  7. Zhu YM, Bu LZ, Shao Q, Huang XQ. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019;9(8):6607. https://doi.org/10.1021/acscatal.9b01375.

    Article  CAS  Google Scholar 

  8. Zhu YM, Bu LZ, Shao Q, Huang XQ. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020;10(5):3455. https://doi.org/10.1021/acscatal.9b04313.

    Article  CAS  Google Scholar 

  9. Zhang WY, Yang Y, Huang BL, Lv F, Wang K, Li N, Luo MC, Chao YG, Li YJ, Sun YJ, Xu ZK, Qin YN, Yang WX, Zhou JH, Du YP, Su D, Guo SJ. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv Mater. 2019;31(15):1805833. https://doi.org/10.1002/adma.201805833.

    Article  CAS  Google Scholar 

  10. Fan XK, Tang M, Wu XT, Luo SP, Chen W, Song X, Quan ZW. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J Mater Chem A. 2019;7(48):27377. https://doi.org/10.1039/C9TA10941B.

    Article  CAS  Google Scholar 

  11. Fan XK, Luo SP, Zhao XX, Wu XT, Luo ZS, Tang M, Chen W, Song X, Quan ZW. One-nanometer-thick platinum-based nanowires with controllable surface structures. Nano Res. 2019;12(7):1721. https://doi.org/10.1007/s12274-019-2428-2.

    Article  CAS  Google Scholar 

  12. Luo MC, Sun YJ, Zhang X, Qin YN, Li MQ, Li YJ, Li CJ, Yang Y, Wang L, Gao P, Lu G, Guo SJ. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv Mater. 2018;30(10):1705515. https://doi.org/10.1002/adma.201705515.

    Article  CAS  Google Scholar 

  13. Bu LZ, Ding JB, Guo SJ, Zhang X, Su D, Zhu X, Yao JL, Guo J, Lu G, Huang XQ. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv Mater. 2015;27(44):7204. https://doi.org/10.1002/adma.201502725.

    Article  CAS  Google Scholar 

  14. Quan ZW, Wang YX, Fang JY. High-index faceted noble metal nanocrystals. Acc Chem Res. 2013;46(4):191. https://doi.org/10.1021/ar300087y.

    Article  CAS  Google Scholar 

  15. Cao XQ, Zhou J, Li S, Qin GW. Ultra-stable metal nano-catalyst synthesis strategy: a perspective. Rare Met. 2020;39(2):113. https://doi.org/10.1007/s12598-019-01350-y.

    Article  CAS  Google Scholar 

  16. Mistry H, Varela AS, Kühl S, Strasser P, Cuenya BR. Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater. 2016;1:16009. https://doi.org/10.1038/natrevmats.2016.9.

    Article  CAS  Google Scholar 

  17. Sulaiman JE, Zhu SQ, Xing ZL, Chang QW, Shao MH. Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal. 2017;7(8):5134. https://doi.org/10.1021/acscatal.7b01435.

    Article  CAS  Google Scholar 

  18. Huang J, Liu Y, Xu MJ, Wan CZ, Liu HT, Li MF, Huang ZH, Duan XF, Pan XQ, Huang Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019;19(8):5431. https://doi.org/10.1021/acs.nanolett.9b01937.

    Article  CAS  Google Scholar 

  19. Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin-Borkowski RE, Strasser P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles. Angew Chem Int Ed. 2017;129(23):6633. https://doi.org/10.1002/ange.201702332.

    Article  Google Scholar 

  20. Chen W, Luo SP, Sun MZ, Wu XY, Zhou YS, Liao YJ, Tang M, Fan XK, Huang BL, Quan ZW. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv Mater. 2022;34(43):2206276. https://doi.org/10.1002/adma.202206276.

    Article  CAS  Google Scholar 

  21. Luo SP, Zhang L, Liao YJ, Li LX, Yang Q, Wu XT, Wu XY, He DS, He CY, Chen W, Wu QL, Li MR, Hensen EJM, Quan ZW. A tensile-strained Pt–Rh single-atom alloy remarkably boosts ethanol oxidation. Adv Mater. 2021;33(17):2008508. https://doi.org/10.1002/adma.202008508.

    Article  CAS  Google Scholar 

  22. Dong AQ, Li H, Wu HM, Li KX, Shao YK, Li ZG, Sun SH, Wang WC, Hu WB. Weakening CO poisoning over size- and support-dependent Ptn/X-graphene catalyst (X = C, B, N, n = 1–6, 13). Rare Met. 2023;42(4):1138. https://doi.org/10.1007/s12598-022-02210-y.

    Article  CAS  Google Scholar 

  23. Liu ZY, Zhao ZP, Peng BS, Duan XF, Huang Y. Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts. J Am Chem Soc. 2020;142(42):17812. https://doi.org/10.1021/jacs.0c07696.

    Article  CAS  Google Scholar 

  24. Koenigsmann C, Wong SS. One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci. 2011;4(4):1161. https://doi.org/10.1039/C0EE00197J.

    Article  CAS  Google Scholar 

  25. Yang NW, Chen D, Cui PL, Lu TY, Liu H, Hu CQ, Xu L, Yang J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat. 2021;2(2):234. https://doi.org/10.1002/smm2.1032.

    Article  CAS  Google Scholar 

  26. Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem. 2011;660(2):254. https://doi.org/10.1016/j.jelechem.2010.10.004.

    Article  CAS  Google Scholar 

  27. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal. 2015;328:36. https://doi.org/10.1016/j.jcat.2014.12.033.

    Article  CAS  Google Scholar 

  28. Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;119(33):6449. https://doi.org/10.1002/ange.200702001.

    Article  Google Scholar 

  29. Guo SJ, Zhang S, Sun XL, Sun SH. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J Am Chem Soc. 2011;133(39):15354. https://doi.org/10.1021/ja207308b.

    Article  CAS  Google Scholar 

  30. Li Q, Fu JJ, Zhu WL, Chen ZZ, Shen B, Wu LH, Xi Z, Wang TY, Lu G, Zhu JJ, Sun SH. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc. 2017;139(12):4290. https://doi.org/10.1021/jacs.7b00261.

    Article  CAS  Google Scholar 

  31. Wang FQ, Zhang WL, Wan HB, Li CX, An WK, Sheng X, Liang XY, Wang XP, Ren YL, Zheng X, Lv DC, Qin YC. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett. 2022;33(5):2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  32. Zhu CZ, Shi QR, Fu SF, Song JH, Xia HB, Du D, Lin YH. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater. 2016;28(39):8779. https://doi.org/10.1002/adma.201602546.

    Article  CAS  Google Scholar 

  33. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108(46):17886. https://doi.org/10.1021/jp047349j.

    Article  CAS  Google Scholar 

  34. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Marković NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science. 2007;315(5811):493. https://doi.org/10.1126/science.1135941.

    Article  CAS  Google Scholar 

  35. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater. 2007;6(3):241. https://doi.org/10.1038/nmat1840.

    Article  CAS  Google Scholar 

  36. Li M, Cullen DA, Sasaki K, Marinkovic NS, More K, Adzic RR. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. J Am Chem Soc. 2013;135(1):132. https://doi.org/10.1021/ja306384x.

    Article  CAS  Google Scholar 

  37. Zhao M, Chen ZT, Lyu ZH, Hood ZD, Xie MH, Vara M, Chi MF, Xia YN. Ru octahedral nanocrystals with a face-centered cubic structure, 111 facets, thermal stability up to 400 °C, and enhanced catalytic activity. J Am Chem Soc. 2019;141(17):7028. https://doi.org/10.1021/jacs.9b01640.

    Article  CAS  Google Scholar 

  38. Li HD, Pan Y, Zhang D, Han Y, Wang ZC, Qin YN, Lin SY, Wu XK, Zhao H, Lai JP, Huang BL, Wang L. Surface oxygen-mediated ultrathin PtRuM (Ni, Fe and Co) nanowires boosting methanol oxidation reaction. J Mater Chem A. 2020;8(5):2323. https://doi.org/10.1039/C9TA11745H.

    Article  CAS  Google Scholar 

  39. Feng YG, Xu WW, Huang BL, Shao Q, Xu L, Yang SZ, Huang XQ. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd–Cd nanocubes. J Am Chem Soc. 2020;142(2):962. https://doi.org/10.1021/jacs.9b10816.

    Article  CAS  Google Scholar 

  40. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93(15):156801. https://doi.org/10.1103/PhysRevLett.93.156801.

    Article  CAS  Google Scholar 

  41. Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J Am Chem Soc. 2011;133(14):5485. https://doi.org/10.1021/ja111690g.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51772142 and 22106121) and Guangdong Science and Technology Department (No. 2016ZT06C279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Hua Zhu or Wen-Hui Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 20198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XK., Chen, W., Zhu, YH. et al. Tuning electronic structure of Pt to enhance ethanol electrooxidation performance of SnO2 patched ultrathin PtRhNi nanowires. Rare Met. 42, 3614–3621 (2023). https://doi.org/10.1007/s12598-023-02428-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02428-4

Navigation