Skip to main content
Log in

A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Initially defined high entropy alloys (HEAs) usually exhibit a single-phase solid-solution structure. However, two and/or more types of phases in HEAs possibly induce the desired microstructure features, which contribute to improving the wear properties of HEAs. Here, we prepare a series of (AlCoCrFeNi)100−xHfx (x = 0, 2, 4 and 6; at%) HEAs and concern their phase compositions, microstructures and wear properties. Hf leads to the formation of (Ni, Co)2Hf-type Laves phase and tailors the microstructure from a body-centered cubic (BCC) single-phase structure to a hypoeutectic structure. An increased hardness from ~ HV 512.3 to ~ HV 734.1 is due to solid-solution strengthening, grain refinement strengthening and precipitated phase strengthening. And a few oxides (Al2O3 + Cr2O3) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from 6.71 × 10−5 to 0.97 × 10−5 m3·N−1·m−1. In addition, Hf addition changes the wear mechanism from abrasive wear, mild oxidative wear and adhesive wear to oxidative wear and adhesive wear.

摘要

最初定义的高熵合金(HEAs) 通常表现出单相固溶体结构。然而, 高熵合金中两种和/或多种类型的相可能会产生所需的微观结构特征, 这有助于改善高熵合金的摩擦性能。在这里, 我们制备了一系列(AlCoCrFrNi)100-xHfx(x = 0, 2, 4和6; at%) 高熵合金, 并研究了它们的相组成、微观结构和摩擦性能。Hf元素导致(Ni, Co)2Hf型Laves相的形成, 并将微观结构从体心立方 (BCC) 单相结构调整为亚共晶结构。硬度从 ~ HV512.3增加到 ~ HV734.1是固溶强化、晶粒细化强化和沉淀相强化造成的。磨损加热引起的少量氧化物 (Al2O3 + Cr2O3) 使高熵合金的磨损率从6.71 × 10−5降低到0.97 × 10–5 m3·N−1·m−1。此外, Hf的加入使磨损机制从磨粒磨损、轻度氧化磨损和粘着磨损转变为氧化磨损和粘着磨损。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye YX, Liu CZ, Wang H, Nieh TG. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 2018;147:78. https://doi.org/10.1016/j.actamat.2018.01.014.

    Article  CAS  Google Scholar 

  2. Lu SY, Miao JW, Lu YP. Strengthening and toughening of multi-principal high-entropy alloys. Chin J Rare Met. 2021;45(5):530. https://doi.org/10.13373/j.cnki.cjrm.XY20080042.

    Article  Google Scholar 

  3. Lu Y, Li CY, Tian L, Zhai JS, Kou SZ. Research progress on properties of high-entropy alloys. Chin J Rare Met. 2022;46(10):1352. https://doi.org/10.13373/j.cnki.cjrm.xy19060029.

    Article  Google Scholar 

  4. Verma A, Tarate P, Abhyankar AC, Mohape MR, Gowtam DS, Deshmukh VP, Shanmugasundaram T. High temperature wear in CoCrFeNiCux high entropy alloys: the role of Cu. Scripta Mater. 2019;161:28. https://doi.org/10.1016/j.scriptamat.2018.10.007.

    Article  CAS  Google Scholar 

  5. Li WD, Xie D, Li DY, Zhang Y, Gao YF, Liaw PK. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777. https://doi.org/10.1016/j.pmatsci.2021.100777.

    Article  CAS  Google Scholar 

  6. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  7. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1. https://doi.org/10.1016/j.pmatsci.2013.10.001.

    Article  CAS  Google Scholar 

  8. Gao XF, Chen RR, Liu T, Fang HZ, Qin G, Su YQ, Guo JJ. High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures. J Mater Sci. 2022;57(12):6573. https://doi.org/10.1007/s10853-022-07066-2.

    Article  CAS  Google Scholar 

  9. Wu MY, Chen K, Xu Z, Li DY. Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy. Wear. 2020;462–463:203493. https://doi.org/10.1016/j.wear.2020.203493.

    Article  CAS  Google Scholar 

  10. Li XF, Feng YH, Liu B, Yi DH, Yang XH, Zhang WD, Chen G, Liu Y, Bai PK. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloys Compd. 2019;788:485. https://doi.org/10.1016/j.jallcom.2019.02.223.

    Article  CAS  Google Scholar 

  11. Ren H, Chen RR, Gao XF, Liu T, Qin G, Wu SP, Guo JJ. Insights on mechanical properties of dual-phase high entropy alloys via Y introduction. J Alloys Compd. 2022;929:167374. https://doi.org/10.1016/j.jallcom.2022.167374.

    Article  CAS  Google Scholar 

  12. Zhang LJ, Zhang MD, Zhou Z, Fan JT, Cui P, Yu PF, Jing Q, Ma MZ, Liaw PK, Li G, Liu RP. Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Mater Sci Eng A. 2018;725:437. https://doi.org/10.1016/j.msea.2018.04.058.

    Article  CAS  Google Scholar 

  13. Lu YP, Gao XX, Dong Y, Wang TM, Chen HL, Mao HH, Zhao YH, Jiang H, Cao ZQ, Li TJ, Guo S. Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification. Nanoscale. 2018;10(4):1912. https://doi.org/10.1039/C7NR07281C.

    Article  CAS  Google Scholar 

  14. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515. https://doi.org/10.1038/s41578-019-0121-4.

    Article  CAS  Google Scholar 

  15. Hou JX, Cao BX, Xiao B, Jiao ZB, Yang T. Compositionally complex coherent precipitation-strengthened high-entropy alloys: a critical review. Rare Met. 2022;41(6):2002. https://doi.org/10.1007/s12598-021-01953-4.

    Article  CAS  Google Scholar 

  16. Wang H, He QF, Yang Y. High-entropy intermetallics: from alloy design to structural and functional properties. Rare Met. 2022;41(6):1989. https://doi.org/10.1007/s12598-021-01926-7.

    Article  CAS  Google Scholar 

  17. Xian X, Zhong ZH, Lin LJ, Zhu ZX, Chen C, Wu YC. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 2022;41(3):1015. https://doi.org/10.1007/s12598-018-1161-4.

    Article  CAS  Google Scholar 

  18. Wang JJ, Kou ZD, Fu S, Wu SS, Liu SN, Yan MY, Wang D, Lan S, Hahn H, Feng T. Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite. Rare Met. 2022;41(6):2038. https://doi.org/10.1007/s12598-021-01931-w.

    Article  CAS  Google Scholar 

  19. Zhang WR, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater. 2018;61(1):2. https://doi.org/10.1007/s40843-017-9195-8.

    Article  CAS  Google Scholar 

  20. Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349. https://doi.org/10.1016/j.mattod.2015.11.026.

    Article  CAS  Google Scholar 

  21. Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981. https://doi.org/10.1063/1.1721448.

    Article  Google Scholar 

  22. Luo DW, Zhou Q, Ye WT, Ren Y, Greiner C, He YX, Wang HF. Design and characterization of self-lubricating refractory high entropy alloy-based multilayered films. ACS Appl Mater Inter. 2021;13(46):55712. https://doi.org/10.1021/acsami.1c16949.

    Article  CAS  Google Scholar 

  23. Miao JW, Yao HW, Wang J, Lu YP, Wang TM, Li TJ. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment. J Alloys Compd. 2022;894:162380. https://doi.org/10.1016/j.jallcom.2021.162380.

    Article  CAS  Google Scholar 

  24. Geng YS, Chen J, Tan H, Cheng J, Zhu SY, Yang J. Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range. Tribol Int. 2021;157:106912. https://doi.org/10.1016/j.triboint.2021.106912.

    Article  CAS  Google Scholar 

  25. Miao JW, Liang H, Zhang AJ, He JY, Meng JH, Lu YP. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribol Int. 2021;153:106599. https://doi.org/10.1016/j.triboint.2020.106599.

    Article  CAS  Google Scholar 

  26. Jin BQ, Zhang NN, Yu HS, Hao DX, Ma YL. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surf Coat Tech. 2020;402:126328. https://doi.org/10.1016/j.surfcoat.2020.126328.

    Article  CAS  Google Scholar 

  27. Zhang AJ, Han JS, Su B, Meng JH. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A. 2018;731:36. https://doi.org/10.1016/j.msea.2018.06.030.

    Article  CAS  Google Scholar 

  28. Li HG, Che PC, Yang XK, Huang YJ, Ning ZL, Sun JF, Fan HB. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met. 2022;41(4):1210. https://doi.org/10.1007/s12598-021-01867-1.

    Article  CAS  Google Scholar 

  29. Li ZJ, He JC, Ding XK, Lian GF, Liu M, Chen JF, Dai PQ. Tailoring the surface microstructures and enhancing wear performance of Al0.5CoCrFeNiSi0.25 high-entropy alloys via laser remelting. Surf Coat Tech. 2023;452:129129. https://doi.org/10.1016/j.surfcoat.2022.129129.

    Article  CAS  Google Scholar 

  30. Ren H, Chen RR, Gao XF, Liu T, Qin G, Wu SP, Guo JJ. Development of wear-resistant dual-phase high-entropy alloys enhanced by C15 Laves phase. Mater Charact. 2023;200:112879. https://doi.org/10.1016/j.matchar.2023.112879.

    Article  CAS  Google Scholar 

  31. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59(16):6308. https://doi.org/10.1016/j.actamat.2011.06.041.

    Article  CAS  Google Scholar 

  32. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261(5):513. https://doi.org/10.1016/j.wear.2005.12.008.

    Article  CAS  Google Scholar 

  33. Chen MR, Lin SJ, Yeh JW, Chuang MH, Chen SK, Huang YS. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A. 2006;37(5):1363. https://doi.org/10.1007/s11661-006-0081-3.

    Article  Google Scholar 

  34. An XL, Liu ZD, Zhang LT, Zou Y, Xu XJ, Chu CL, Wei W, Sun WW. A new strong pearlitic multi-principal element alloy to withstand wear at elevated temperatures. Acta Mater. 2022;227:117700. https://doi.org/10.1016/j.actamat.2022.117700.

    Article  CAS  Google Scholar 

  35. Jiang H, Jiang L, Qiao DX, Lu YP, Wang TM, Cao ZQ, Li TJ. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J Mater Sci Technol. 2017;33(7):712. https://doi.org/10.1016/j.jmst.2016.09.016.

    Article  CAS  Google Scholar 

  36. Jin BQ, Zhang NN, Yin S. Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting. J Mater Sci Technol. 2022;121:163. https://doi.org/10.1016/j.jmst.2021.12.055.

    Article  CAS  Google Scholar 

  37. Hsu CY, Yeh JW, Chen SK, Shun TT. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall Mater Trans A. 2004;35(5):1465. https://doi.org/10.1007/s11661-004-0254-x.

    Article  Google Scholar 

  38. Zhao DC, Kong DC, Huang J, Wang ML, Yamaguchi T, Wang HW. Achieving the lightweight wear-resistant TiC reinforced AlFeCrCo medium-entropy alloy coating on Mg alloy via resistance seam processing. Scripta Mater. 2022;210:114429. https://doi.org/10.1016/j.scriptamat.2021.114429.

    Article  CAS  Google Scholar 

  39. Santodonato LJ, Liaw PK, Unocic RR, Bei H, Morris JR. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat Commun. 2018;9(1):4520. https://doi.org/10.1038/s41467-018-06757-2.

    Article  CAS  Google Scholar 

  40. Qin G, Chen RR, Mao HH, Yan Y, Li XJ, Schönecker S, Vitos L, Li XQ. Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy. Acta Mater. 2021;208:116763. https://doi.org/10.1016/j.actamat.2021.116763.

    Article  CAS  Google Scholar 

  41. Chattopadhyay C, Prasad A, Murty BS. Phase prediction in high entropy alloys – a kinetic approach. Acta Mater. 2018;153:214. https://doi.org/10.1016/j.actamat.2018.05.002.

    Article  CAS  Google Scholar 

  42. Ren H, Chen RR, Gao XF, Liu T, Qin G, Wu SP, Guo JJ. Phase formation and mechanical features in (AlCoCrFeNi)100-xHfx high-entropy alloys: the role of Hf. Mater Sci Eng A. 2022;858:144156. https://doi.org/10.1016/j.msea.2022.144156.

    Article  CAS  Google Scholar 

  43. Ren H, Chen RR, Gao XF, Liu T, Qin G, Wu SP, Guo JJ. Sc doping induced the mechanical property improvement of dual-phase high-entropy alloy. Mater Sci Eng A. 2023;862:144425. https://doi.org/10.1016/j.msea.2022.144425.

    Article  CAS  Google Scholar 

  44. Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A. 2012;532:480. https://doi.org/10.1016/j.msea.2011.10.110.

    Article  CAS  Google Scholar 

  45. Chen J, Niu PY, Liu YZ, Lu YK, Wang XH, Peng YL, Liu JN. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater Des. 2016;94:39. https://doi.org/10.1016/j.matdes.2016.01.033.

    Article  CAS  Google Scholar 

  46. Winter MJ. WebElements, Periodic Table. University of Sheffield; 1993.

  47. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817. https://doi.org/10.2320/matertrans.46.2817.

    Article  CAS  Google Scholar 

  48. Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci: Mater Int. 2011;21(6):433. https://doi.org/10.1016/S1002-0071(12)60080-X.

    Article  Google Scholar 

  49. Linden Y, Pinkas M, Munitz A, Meshi L. Long-period antiphase domains and short-range order in a B2 matrix of the AlCoCrFeNi high-entropy alloy. Scripta Mater. 2017;139:49. https://doi.org/10.1016/j.scriptamat.2017.06.015.

    Article  CAS  Google Scholar 

  50. Kumar KS, Liu CT. Precipitation in a Cr–Cr2Nb alloy. Acta Mater. 1997;45(9):3671. https://doi.org/10.1016/S1359-6454(97)00050-5.

    Article  CAS  Google Scholar 

  51. Kumar KS, Pang L, Liu CT, Horton J, Kenik EA. Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy. Acta Mater. 2000;48(4):911. https://doi.org/10.1016/S1359-6454(99)00377-8.

    Article  CAS  Google Scholar 

  52. Huo WY, Zhou H, Fang F, Xie ZH, Jiang JQ. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des. 2017;134:226. https://doi.org/10.1016/j.matdes.2017.08.030.

    Article  CAS  Google Scholar 

  53. Petch NJ. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute. 1953;174:25. https://doi.org/10.1016/0013-7944(87)90050-6.

    Article  CAS  Google Scholar 

  54. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B. 1951;64(9):747. https://doi.org/10.1088/0370-1301/64/9/303.

    Article  Google Scholar 

  55. Sriharitha R, Murty BS, Kottada RS. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys Compd. 2014;583:419. https://doi.org/10.1016/j.jallcom.2013.08.176.

    Article  CAS  Google Scholar 

  56. Tabor D. The Hardness of Metals. Oxford: Oxford University Press; 1951.1.

    Google Scholar 

  57. Ma Y, Wang Q, Jiang BB, Li CL, Hao JM, Li XN, Dong C, Nieh TG. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni Co, Fe, Cr)14 compositions. Acta Mater. 2018;147:213. https://doi.org/10.1016/j.actamat.2018.01.050.

    Article  CAS  Google Scholar 

  58. Liu H, Sun SF, Zhang T, Zhang GZ, Yang HF, Hao JB. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf Coat Tech. 2021;405:126522. https://doi.org/10.1016/j.surfcoat.2020.126522.

    Article  CAS  Google Scholar 

  59. Meng JH, Loh NH, Tay BY, Fu G, Tor SB. Tribological behavior of 316L stainless steel fabricated by micro powder injection molding. Wear. 2010;268(7):1013. https://doi.org/10.1016/j.wear.2009.12.033.

    Article  CAS  Google Scholar 

  60. Quinn TFJ. Review of oxidational wear: part I: the origins of oxidational wear. Tribol Int. 1983;16(5):257. https://doi.org/10.1016/0301-679X(83)90086-5.

    Article  CAS  Google Scholar 

  61. Stott FH. The role of oxidation in the wear of alloys. Tribol Int. 1998;31(1):61. https://doi.org/10.1016/S0301-679X(98)00008-5.

    Article  CAS  Google Scholar 

  62. Hasegawa M, Chapter 3.3 - Ellingham Diagram, Edited by S. Seetharaman, Elsevier, Treatise on Process Metallurgy, Boston, 2014;507. Doi: https://doi.org/10.1016/B978-0-08-096986-2.00032-1.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51825401), the Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z19154), the National Natural Science Foundation of Heilongjiang Province (No. LH2020E031) and the Interdisciplinary Research Foundation of HIT. The authors thanked Dr. J.X. Zhang, Harbin Institute of Technology, for helpful discussions and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Run Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Chen, RR., Gao, XF. et al. A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features. Rare Met. 43, 324–333 (2024). https://doi.org/10.1007/s12598-023-02410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02410-0

Keywords

Navigation