Skip to main content
Log in

Al-doped ZnO/WO3 heterostructure films prepared by magnetron sputtering for isopropanol sensors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal oxide semiconductors (MOSs) are ideal sensing materials for detecting volatile organic compounds due to their low cost, diversity, high stability, and ease of production. However, it remains a grand challenge to develop the MOSs-based gas sensors for sensing isopropanol with desired performance via a simple, effective, and controllable method. Herein, we reported the preparation of the Al-doped ZnO (AZO)/WO3 heterostructure films by directly depositing the AZO coating onto the WO3 coating using a strategy of magnetron sputtering. The AZO/WO3 heterostructure films were constructed by numbers of irregular nanoparticles that were interconnected with each other. The AZO/WO3 heterostructure films-based gas sensors exhibited excellent isopropanol-sensing performance with high response, promising selectivity, low detection limit, fast response rate, wide detection range, and ideal reproducibility. The promising isopropanol-sensing performance of the AZO/WO3 heterostructure films arises mainly from their high uniformity, unique microstructures with high surface roughness, and the construction of the heterostructure between the AZO and WO3 coatings. This work provides a versatile approach to prepare the MOSs-based heterostructure films for assembling the gas sensors.

Graphical abstract

摘要

金属氧化物半导体(MOSs)因其成本低、种类多、稳定性高和容易生产的特点, 是检测挥发性有机化合物的理想传感材料。然而, 如何通过简单、有效和可控的方法开发出具有理想性能的基于MOSs的异丙醇传感气体传感器, 仍然是一个巨大的挑战。在此, 我们报告了通过使用磁控溅射法将AZO薄膜直接沉积到WO3薄膜上, 制备了Al掺杂的ZnO (AZO) /WO3异质结构薄膜。AZO/WO3异质结构薄膜是由许多相互连接的不规则纳米颗粒构成的。基于AZO/WO3异质结构薄膜的气体传感器表现出优异的异丙醇传感性能, 具有高响应性、高选择性、低检测限、快响应率、宽检测范围和理想的重现性。AZO/WO3异质结构薄膜具有良好的异丙醇传感性能, 主要源于其高均匀性、具有高表面粗糙度的独特微结构以及AZO和WO3涂层之间的异质结构构造。这项工作为基于MOSs异质结构薄膜的气体传感器组装提供了一种通用的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Larmier K, Chizallet C, Cadran C, Maury S, Abboud J, Lamic-Humblot A, Marceau E, Lauron-Pernot H. Mechanistic investigation of isopropanol conversion on alumina catalysts: location of active sites for alkene/ether production. ACS Catal. 2015;5(7):4423. https://doi.org/10.1021/acscatal.5b00723.

    Article  CAS  Google Scholar 

  2. Li H, Liu HX, Fang J, Yin S, Chen CY, Li CL. Isopropanol, n-butanol and ethanol recovery from IBE model solutions by salting-out using potassium pyrophosphate. J Chem Technol Biotechnol. 2019;94:3850. https://doi.org/10.1002/jctb.6183.

    Article  CAS  Google Scholar 

  3. Zhai YL, Zhang BQ, Liu XF, Tong AQ. Manipulation of homogeneous membranes with nano-sized spherical polyelectrolyte complexes for enhanced pervaporation performances in isopropanol dehydration. Sep Purif Technol. 2020;234(1):116093. https://doi.org/10.1016/j.seppur.2019.116093.

    Article  CAS  Google Scholar 

  4. Shen MC, Zhao GF, Nie Q, Meng C, Sun WD, Si JQ, Liu Y, Lu Y. Ni-foam-structured Ni-Al2O3 ensemble as an efficient catalyst for gas-phase acetone hydrogenation to isopropanol. ACS Appl Mater Interfaces. 2021;13(24):28334. https://doi.org/10.1021/acsami.1c07084.

    Article  CAS  Google Scholar 

  5. Yang H, Zhang C, Lai NY, Huang B, Fei P, Ding DW, Hu P, Gu Y, Wu H. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. Bioresour Technol. 2020;296:122337. https://doi.org/10.1016/j.biortech.2019.122337.

    Article  CAS  Google Scholar 

  6. Punja M. Isopropanol. In: Encyclopedia of Toxicology (Third Edition). 2014. 1144. https://doi.org/10.1016/B978-0-12-386454-3.00741-7.

  7. Covington JA, Westenbrink EW, Ouaret N, Harbord R, Bailey C, O’Connell N, Cullis J, Williams N, Nwokolo CU, Bardhan KD, Arasaradnam RP. Application of a novel tool for diagnosing bile acid diarrhoea. Sensors. 2013;13(9):24018955. https://doi.org/10.3390/s130911899.

    Article  CAS  Google Scholar 

  8. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  9. Zhang C, Li Y, Liu GF, Liao HL. Preparation of ZnO1-x by peroxide thermal decomposition and its room temperature gas sensing properties. Rare Met. 2022;41(3):871. https://doi.org/10.1007/s12598-021-01840-y.

    Article  CAS  Google Scholar 

  10. Zhang LX, Zhao MM, Yin YY, Xing Y, Bie LJ. Rich defects and nanograins boosted formaldehyde sensing performance of mesoporous polycrystalline ZnO nanosheets. Rare Met. 2022;41(7):2292. https://doi.org/10.1007/s12598-021-01946-3.

    Article  CAS  Google Scholar 

  11. Zhang B, Fu W, Meng X, Ruan A, Su P, Yang H. Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl Surf Sci. 2018;456:586. https://doi.org/10.1016/j.apsusc.2018.06.150.

    Article  CAS  Google Scholar 

  12. Halek G, Baikie ID, Teterycz H, Halek P, Suchorska-Woźniak P, Wiśniewski K. Work function analysis of gas sensitive WO3 layers with Pt doping. Sens Actuators B Chem. 2013;187:379. https://doi.org/10.1016/j.snb.2012.12.062.

    Article  CAS  Google Scholar 

  13. Xie J, Wang H, Duan M. QCM chemical sensor based on ZnO colloid spheres for the alcohols. Sens Actuators B Chem. 2014;203:239. https://doi.org/10.1016/j.snb.2014.06.119.

    Article  CAS  Google Scholar 

  14. Bai Y, Fu HT, Yang XH, Xiong SX, Li S, An XZ. Conductometric isopropanol gas sensor: Ce-doped In2O3 nanosheet-assembled hierarchical microstructure. Sens Actuators B Chem. 2023;377:133007. https://doi.org/10.1016/j.snb.2022.133007.

    Article  CAS  Google Scholar 

  15. Hu D, Han BQ, Han R, Deng SJ, Wang Y, Li Q, Wang YD. SnO2 nanorods based sensing material as an isopropanol vapor sensor. New J Chem. 2014;38:2443. https://doi.org/10.1039/C3NJ01482G.

    Article  CAS  Google Scholar 

  16. Meng FL, Shi X, Yuan ZY, Ji HY, Qin WB, Shen YB, Xing CY. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens Actuators B Chem. 2022;350:130867. https://doi.org/10.1016/j.snb.2021.130867.

    Article  CAS  Google Scholar 

  17. Ramanavičius S, Petrulevičienė M, Juodkazytė J, Grigucevičienė A, Ramanavičius A. Selectivity of tungsten oxide synthesized by sol–gel method towards some volatile organic compounds and gaseous materials in a broad range of temperatures. Materials. 2020;13(3):523. https://doi.org/10.3390/ma13030523.

    Article  CAS  Google Scholar 

  18. Luo YF, Ly A, Lahem D, Zhang C, Debliquy M. A novel low-concentration isopropanol gas sensor based on Fe-doped ZnO nanoneedles and its gas sensing mechanism. J Mater Sci. 2021;56:3230. https://doi.org/10.1007/s10853-020-05453-1.

    Article  CAS  Google Scholar 

  19. Luo YF, Ly A, Lahem D, Martin JDM, Romain A, Zhang C, Debliquy M. Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of VOCs. Sens Actuators B Chem. 2022;360:131674. https://doi.org/10.1016/j.snb.2022.131674.

    Article  CAS  Google Scholar 

  20. Wang CN, Li YL, Gong FL, Zhang YH, Fang SM, Zhang HL. Advances in doped ZnO nanostructures for gas sensor. Chem Rec. 2020;10(12):1553. https://doi.org/10.1002/tcr.202000088.

    Article  CAS  Google Scholar 

  21. Wang GD, Wu PJ, Guo LL, Wang W, Liu WQ, Wang YY, Chen TY, Wang HN, Xu YH, Yang YL. Preparation of Au@ZnO nanofilms by combining magnetron sputtering and post-annealing for selective detection of isopropanol. Chemosensors. 2022;10(6):211. https://doi.org/10.3390/chemosensors10060211.

    Article  CAS  Google Scholar 

  22. Wang SC, Wang XH, Qiao GQ, Chen XY, Wang XZ, Wu NN, Tian J, Cui HZ. NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing. Rare Met. 2022;41(3):960. https://doi.org/10.1007/s12598-021-01846-6.

    Article  CAS  Google Scholar 

  23. Zhang H, Jin Z, Xu MD, Zhang Y, Huang J, Cheng H, Wang XF, Zheng ZL, Ding Y. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sens J. 2021;21(12):13041. https://doi.org/10.1109/JSEN.2021.3054654.

    Article  CAS  Google Scholar 

  24. Cai XY, Hu D, Deng SJ, Han BQ, Wang Y, Wu JM, Wang YD. Isopropanol sensing properties of coral-like ZnO–CdO composites by flash preparation via self-sustained decomposition of metal–organic complexes. Sens Actuators B Chem. 2014;198:402. https://doi.org/10.1016/j.snb.2014.03.093.

    Article  CAS  Google Scholar 

  25. Jin Q, Wen W, Zheng SL, Wu JM. Enhanced isopropanol sensing of coral-like ZnO–ZrO2 composites. Nanotechnology. 2020;31(19):195502. https://doi.org/10.1088/1361-6528/ab6fd9.

    Article  CAS  Google Scholar 

  26. Perfecto TM, Zito CA, Mazon T, Volanti D. Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide–WO3·0.33H2O nano-needles. J Mater Chem C. 2018;6:2822. https://doi.org/10.1039/C8TC00324F.

    Article  CAS  Google Scholar 

  27. Hien VX, Lee JH, Kim JJ, Heo YW. Structure and NH3 sensing properties of SnO thin film deposited by RF magnetron sputtering. Sens Actuators B Chem. 2014;194:131. https://doi.org/10.1016/j.snb.2013.12.086.

    Article  CAS  Google Scholar 

  28. Hsueh TJ, Li PS, Fang SY, Hsu CL. A vertical CuO-NWS/MEMS NO2 gas sensor that is produced by sputtering. Sens Actuators B Chem. 2022;355:131260. https://doi.org/10.1016/j.snb.2021.131260.

    Article  CAS  Google Scholar 

  29. Bhati VS, Ranwa S, Fanetti M, Valant M, Kumar M. Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering. Sens Actuators B Chem. 2018;255(1):588. https://doi.org/10.1016/j.snb.2017.08.106.

    Article  CAS  Google Scholar 

  30. Sucharitakul W, Sukee A, Leuasoongnoen P, Horprathum M, Lertvanithphol T, Janphuang P, Mitsomwang P, Sindhupakorn B. Fabrication of an acetone gas sensor based on Si-doped WO3 nanorods prepared by reactive magnetron co-sputtering with OAD technique. Mater Res Express. 2021;8:125702. https://doi.org/10.1088/2053-1591/ac44d5.

    Article  CAS  Google Scholar 

  31. Parellada-Monreal L, Gherardi S, Zonta G, Malagù C, Casotti D, Cruciani G, Guidi V, Martínez-Calderón M, Castro-Hurtado I, Gamarra D, Lozano J, Presmanes L, Mandayo GG. WO3 processed by direct laser interference patterning for NO2 detection. Sens Actuators B Chem. 2020;305:127226. https://doi.org/10.1016/j.snb.2019.127226.

    Article  CAS  Google Scholar 

  32. Xu JQ, Xue ZG, Qin N, Cheng ZX, Xiang Q. The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sens Actuators B Chem. 2017;242:148. https://doi.org/10.1016/j.snb.2016.09.193.

    Article  CAS  Google Scholar 

  33. Wang K, Li NN, Sun L, Zhang J, Liu XH. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl Mater Interfaces. 2020;12(33):37506. https://doi.org/10.1021/acsami.0c12288.

    Article  CAS  Google Scholar 

  34. Li ZJ, Li H, Wu ZL, Wang MK, Luo JT, Torun H, Hu PA, Yang C, Grundmann M, Liu XT, Fu YQ. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horizons. 2019;6(3):470. https://doi.org/10.1039/C8MH01365A.

    Article  CAS  Google Scholar 

  35. Xu YS, Zheng W, Liu XH, Zhang LQ, Zheng LL, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horizons. 2020;7(6):1519. https://doi.org/10.1039/D0MH00495B.

    Article  CAS  Google Scholar 

  36. Kabcum S, Kotchasak N, Channei D, Tuantranont A, Wisitsoraat A, Phanichphant S, Liewhiran C. Highly sensitive and selective NO2 sensor based on Au-impregnated WO3 nanorods. Sens Actuators B Chem. 2017;252:523. https://doi.org/10.1016/j.snb.2017.06.011.

    Article  CAS  Google Scholar 

  37. Xiao XY, Zhou XR, Ma JH, Zhu YH, Cheng XW, Luo W, Deng YH. Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites. ACS Appl Mater Interfaces. 2019;11(29):26268. https://doi.org/10.1021/acsami.9b08128.

    Article  CAS  Google Scholar 

  38. Zhang M, Tang YK, Tian X, Wang HR, Wang JH, Zhang QM. Magnetron co-sputtering optimized aluminum-doped zinc oxide (AZO) film for high-response formaldehyde sensing. J Alloys Compd. 2021;880:160510. https://doi.org/10.1016/j.jallcom.2021.160510.

    Article  CAS  Google Scholar 

  39. Sankar Ganesh R, Navaneethan M, Mani GK, Ponnusamy S, Tsuchiya K, Muthamizhchelvan C, Kawasaki S, Hayakawa Y. Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J Alloys Compd. 2017;698:555. https://doi.org/10.1016/j.jallcom.2016.12.187.

    Article  CAS  Google Scholar 

  40. Chen L, Cai LX, Geng J, Liu CC, Wang Y, Guo Z. Polyoxometalate-assisted in situ growth of ZnMoO4 on ZnO nanofibers for the selective detection of ppb-level acetone. Sens Actuators B Chem. 2022;369:132354. https://doi.org/10.1016/j.snb.2022.132354.

    Article  CAS  Google Scholar 

  41. Xing XX, Chen T, Zhao RJ, Wang ZZ, Wang YD. A low temperature butane gas sensor used Pt nanoparticles-modified AZO macro/mesoporous nanosheets as sensing material. Sens Actuators B Chem. 2018;254:227. https://doi.org/10.1016/j.snb.2017.07.091.

    Article  CAS  Google Scholar 

  42. Zhu XJ, Chang XT, Tang SK, Chen XQ, Gao WX, Niu SC, Li JF, Jiang YC, Sun SB. Humidity-tolerant chemiresistive gas sensors based on hydrophobic CeO2/SnO2 heterostructure films. ACS Appl Mater Interfaces. 2022;14(22):25680. https://doi.org/10.1021/acsami.2c03575.

    Article  CAS  Google Scholar 

  43. Nam B, Ko TK, Hyun SK, Lee C. Sensitivities of a 6:4 (by molar ratio) ZnO/WO3 composite nanoparticle sensor to reducing and oxidizing gases. Appl Surf Sci. 2020;504:144104. https://doi.org/10.1016/j.apsusc.2019.144104.

    Article  CAS  Google Scholar 

  44. Yang S, Sun J, Xu L, Zhou QQ, Chen XF, Zhu SD, Dong B, Lu GY, Song HW. Au@ZnO functionalized three-dimensional macroporous WO3: a application of selective H2S gas sensor for exhaled breath biomarker detection. Sens Actuators B Chem. 2020;324:128725. https://doi.org/10.1016/j.snb.2020.128725.

    Article  CAS  Google Scholar 

  45. Huang XF, Chi ZT, Yang W, Deng YH, Xie WF. Synthesis of Bi2O2CO3/In(OH)3·xH2O nanocomposites for isopropanol sensor with excellent performances at low temperature. Sens Actuators B Chem. 2022;361:131715. https://doi.org/10.1016/j.snb.2022.131715.

    Article  CAS  Google Scholar 

  46. Dong CJ, Zhao RJ, Yao LJ, Ran Y, Zhang X, Wang YD. A review on WO3 based gas sensors: morphology control and enhanced sensing properties. J Alloys Compd. 2020;820:153194. https://doi.org/10.1016/j.jallcom.2019.153194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52172094 and 22209105), Shanghai Municipal Natural Science Foundation (No. 21ZR1426700) and the “Shuguang” Program of Shanghai Education Commission (No. 19SG46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Ting Chang or Shi-Bin Sun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, WX., Chang, XT., Zhu, XJ. et al. Al-doped ZnO/WO3 heterostructure films prepared by magnetron sputtering for isopropanol sensors. Rare Met. 43, 247–256 (2024). https://doi.org/10.1007/s12598-023-02406-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02406-w

Keywords

Navigation