Skip to main content
Log in

Ag-doped WO3 nanostructure films for organic volatile gas sensor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel gas sensor based on Ag-doped WO3 nanostructures was successfully deposited on a glass substrate via electron beam evaporation technique. The microstructure, surface morphology, chemical composition, crystal structure, and optical properties of the pure and Ag-doped WO3 nanostructure thin films were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer, and photoluminescence spectroscopy (PL). Gas-sensing tests revealed that the 15 wt% Ag-doped WO3 nanostructure possess excellent gas-sensing performance for ethanol. The sensitivity of the material toward 100 ppm ethanol was as high as 65 at an optimum operating temperature of 300 °C, which is higher than that of undoped WO3. The response/recovery times 9 s/11 s, great selectivity and outstanding long-term stability was obserevd for the 15 wt% Ag doped WO3 nanostructure sensor. The improvement of ethanol-sensing performance is related to the active space charge regions around the interface of Ag particles and WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Jiménez-Cadena, J. Riu, F.X. Rius, Analyst 132, 1083 (2007)

    Google Scholar 

  2. X.J. Huang, Y.K. Choi, Sens. Actuators B 122, 659 (2007)

    CAS  Google Scholar 

  3. A. Staerz, U. Weimar, N. Barsan, Sensors 16, 1815 (2016)

    Google Scholar 

  4. Y. Wang, B. Zhang, J. Liu, Q. Yang, X. Cui, Y. Gao, G. Lu, Sens Actuators B 236, 67 (2016)

    CAS  Google Scholar 

  5. S.B. Upadhyay, R.K. Mishra, P.P. Sahay, Ceram. Int. 42, 15301 (2016)

    CAS  Google Scholar 

  6. R.G. Motsoeneng, I. Kortidis, S.S. Ray, D.E. Motaung, ACS Omega 4, 13696 (2019)

    CAS  Google Scholar 

  7. H. Yu, J. Li, Y. Tian, Z. Li, Int. J. Electrochem. Sci. 13, 9281 (2018)

    CAS  Google Scholar 

  8. S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, Sens. Actuators B 240, 426 (2017)

    CAS  Google Scholar 

  9. P.S. Kolhea, P.M. Koinkarb, N. Maitic, K.M. Sonawane, Phys. B 524, 90 (2017)

    Google Scholar 

  10. Y. Wang, X. Cui, Q. Yang, J. Liu, Y. Gao, P. Sun, G. Lu, Sens. Actuators B 225, 544 (2016)

    CAS  Google Scholar 

  11. G. Zhao, J. Xuan, X. Liu, F. Jia, Y. Sun, M. Sun, G. Yin, B. Liu, Nanomaterials 9, 435 (2019)

    CAS  Google Scholar 

  12. H. Liu, W. Shen, X. Chen, RSC Adv. 9, 24519 (2019)

    CAS  Google Scholar 

  13. X. Guan, Y. Wang, P. Luo, Y. Yu, D. Chen, Nanomaterials 9, 445 (2019)

    CAS  Google Scholar 

  14. C. Zhang, D. Sun, M. Shen, H. Liao, Surf. Eng. (2019). https://doi.org/10.1080/02670844.2019.1651551

    Article  Google Scholar 

  15. H. Xu, J. Gao, M. Li, Y. Zhao, M. Zhang, T. Zhao, L. Wang, W. Jiang, G. Zhu, X. Qian, Y. Fan, J. Yang, W. Luo, Front. Chem. 7, 266 (2019)

    CAS  Google Scholar 

  16. S. Zhu, X. Liu, Z. Chen, C. Liu, C. Feng, J. Gu, D. Zhang, J. Mater. Chem. 20, 9126 (2010)

    CAS  Google Scholar 

  17. S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo, L. Deng, J. Mater. Chem. A 7, 6161 (2019)

    CAS  Google Scholar 

  18. D. Madhan, P. Rajkumar, P. Rajeshwaran, A. Sivarajan, M. Sangeetha, Appl. Phys. A 120, 463 (2015)

    CAS  Google Scholar 

  19. S. Mohammed Harshulkhan, K. Janaki, G. Velraj, R. Sakthi Ganapathy, S. Krishnaraj, J. Mater. Sci. 270, 3158 (2015)

    Google Scholar 

  20. F. Li, S. Guo, J. Shen, L. Shen, D. Sun, B. Wang, Y. Chen, S. Ruan, Sens. Actuators B 238, 364 (2017)

    CAS  Google Scholar 

  21. R.J. Bose, N. Illyasukutty, K.S. Tan, R.S. Rawat, M.V. Matham, H. Kohler, V.M. Pillai, Appl. Surf. Sci. 440, 320 (2018)

    Google Scholar 

  22. S.S. Kalanur, H. Seo, J. Colloid Interface Sci. 509, 440 (2018)

    CAS  Google Scholar 

  23. C. Feng, X. Kou, X. Liao, Y. Sun, G. Lu, RSC Adv. 7, 41105 (2017)

    CAS  Google Scholar 

  24. J. Zhou, Y. Wei, G. Luo, J. Zheng, C. Xu, J. Mater. Chem. C 4, 1613 (2016)

    CAS  Google Scholar 

  25. R. Chen, Z. Chongwen, J. Bian, A. Sandhu, W. Gao, Nanotechnology 22, 105706 (2011)

    Google Scholar 

  26. M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40, 5489 (2014)

    CAS  Google Scholar 

  27. X. Song, S. Shi, C. Cao, X. Chen, J. Cui, G. He, Z. Sun, J. Alloys Compd. 551, 430 (2013)

    CAS  Google Scholar 

  28. K. Paipitak, W. Techitdheera, S. Porntheeraphat, W. Pecharapa, Energy Proced. 34, 689 (2013)

    CAS  Google Scholar 

  29. X.Y. Gao, S.Y. Wang, J. Li, Y.X. Zheng, R.J. Zhang, P. Zhou, Y.M. Yang, L.Y. Chen, Thin Solid Films 455, 438 (2004)

    Google Scholar 

  30. Y.W. Lu, X.W. Du, J. Sun, X. Han, S.A. Kulinich, J. Appl. Phys. 100, 063512 (2006)

    Google Scholar 

  31. D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J. Mater. Sci.: Mater. Electron. 26, 6823 (2015)

    CAS  Google Scholar 

  32. S. Ramkumar, G. Rajarajan, Mater. Electron. 27, 12185 (2016)

    CAS  Google Scholar 

  33. R.A. Rakkesh, D. Durgalakshmi, S. Balakumar, RSC Adv. 6, 34342 (2016)

    CAS  Google Scholar 

  34. X. Liu, Z. Chang, L. Luo, X. Lei, J. Liu, X. Sun, J. Mater. Chem. 22, 7232 (2012)

    CAS  Google Scholar 

  35. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)

    CAS  Google Scholar 

  36. I.S. Hwang, J.K. Choi, H.S. Woo, S.J. Kim, S.Y. Jung, J.H. Lee, ACS Appl. Mater. Interfaces. 3, 3140 (2011)

    CAS  Google Scholar 

  37. R.K. Joshi, F.E. Kruis, O. Dmitrieva, J. Nanoparticle Res. 8, 797 (2006)

    CAS  Google Scholar 

  38. V.N. Singh, B.R. Mehta, R.K. Joshi, F.E. Kruis, S.M. Shivaprasad, Sens. Actuators B 125, 482 (2007)

    CAS  Google Scholar 

  39. D. Meng, G. Wang, X. San, Y. Song, Y. Shen, Y. Zhang, F. Meng, J. Alloys Compd. 649, 731 (2015)

    CAS  Google Scholar 

  40. L. Xiao, S. Xu, G. Yu, G. Liu, Sens. Actuators B 255, 2002 (2018)

    CAS  Google Scholar 

  41. S. Choi, M. Bonyani, G.J. Sun, J.K. Lee, S.K. Hyun, C. Lee, Appl. Surf. Sci. 432, 241 (2018)

    CAS  Google Scholar 

  42. Y. Wang, C. Liu, L. Wang, J. Liu, B. Zhang, Y. Gao, Sens. Actuators B 240, 1321 (2017)

    CAS  Google Scholar 

  43. Y. Zhang, W. Zeng, Y. Li, Mater. Lett. 235, 49 (2019)

    CAS  Google Scholar 

  44. X. Jingkun, S. Chengwen, D. Wei, L. Chen, Y. Yanyan, Rare Metal Mater. Eng. 46, 1241 (2017)

    Google Scholar 

  45. K. Anand, J. Kaur, R.C. Singh, R.C. Thangaraj, Chem. Phys. Lett. 682, 140 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sivasankar Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adilakshmi, G., Reddy, R.S., Reddy, A.S. et al. Ag-doped WO3 nanostructure films for organic volatile gas sensor application. J Mater Sci: Mater Electron 31, 12158–12168 (2020). https://doi.org/10.1007/s10854-020-03762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03762-4

Navigation