Skip to main content
Log in

Heteroepitaxial growth of Au@Pd core–shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity. Recently, significant advance has been made in synthesizing metal nanocrystals with intrinsic chirality. Nonetheless, the majority reports are limited to gold. Herein, through a heteroepitaxial growth strategy, the synthesis of metal nanocrystals with intrinsic chirality to palladium was extended for the first time and their application in enantioselective recognition was demonstrated. The heteroepitaxial growth strategy allows for transferring the chirality of homochiral Au nanocrystals to Au@Pd core–shell nanocrystals. By employing the chiral Au@Pd nanocrystals as enantiomeric recognizing elements, a series of electrochemical sensors for chiral discrimination were developed. Under optimal conditions, the peak potential between D-dihydroxyphenylalanine (D-DOPA) and L-dihydroxyphenylalanine (L-DOPA) is about 80 mV, and the peak current of D-DOPA is 2 times as much as that of L-DOPA, which enables the determination of the enantiomeric excess (EE, %) of L-DOPA. Overall, this report not only introduces a heteroepitaxial growth strategy to synthesize metal nanocrystals with intrinsic chirality, but also demonstrates the superior capability of integrating intrinsic chirality and catalytic properties into metal nanocrystals for chiral recognition.

Graphical abstract

摘要

本征手性贵金属表面具有优异的化学稳定性和高催化活性,因而成为研究对映选择性化学的理想对象。最近,本征手性金属纳米晶的合成领域取得了一系列重大进展。然而,大多数报道仅限于金元素。在本文中,通过异质外延生长策略,我们首次将本征手性金属纳米晶的合成扩展到钯元素,并应用于对映选择性识别。异质外延生长策略成功地将Au纳米晶的手性转移至Au@Pd核壳纳米晶。通过将手性Au@Pd纳米晶作为对映体识别探针,开发了一系列用于手性识别的电化学传感器。在最佳条件下,D-多巴和L-多巴之间的氧化峰值电位差约为80 mV,D-多巴的氧化峰值电流是L-多巴的2倍。这种性质可以在外消旋体溶液中测定L-多巴的对映体过量百分比。这项工作为合成具有本征手性的金属纳米晶提供了一种异质外延生长策略,并展示了具有本征手性和高催化活性金属纳米晶对手性识别应用的优越潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shukla N, Gellman AJ. Chiral metal surfaces for enantioselective processes. Nat Mater. 2020;19(9):939. https://doi.org/10.1038/s41563-020-0734-4.

    Article  CAS  Google Scholar 

  2. Abbas SU, Li JJ, Liu X, Siddique S, Shi YX, Hou M, Yang K, Nosheen F, Cui XY, Zheng GC, Zhang ZC. Chiral metal nanostructures: synthesis, properties and applications. Rare Met. 2023;42(8):2489. https://doi.org/10.1007/s12598-023-02274-4.

    Article  CAS  Google Scholar 

  3. Wei Y, Wang X, Yu W, Gao Q, Chong XY, Hu CY. Theory designs and experiment studies of pt-based solid solution ultrahigh temperature alloy. Chin J Rare Met. 2022;46(9):1163. https://doi.org/10.13373/j.cnki.cjrm.XY21070025.

    Article  Google Scholar 

  4. Lee HE, Ahn HY, Mun J, Lee YY, Kim M, Cho NH, Chang K, Kim WS, Rho J, Nam KT. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360. https://doi.org/10.1038/s41586-018-0034-1.

    Article  CAS  Google Scholar 

  5. Zheng GC, Bao ZY, Pérez-Juste J, Du RL, Liu W, Dai JY, Zhang W, Lee LYS, Wong KY. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew Chem Int Ed. 2018;57(50):16452. https://doi.org/10.1002/anie.201810693.

    Article  CAS  Google Scholar 

  6. Kim H, Im SW, Cho NH, Seo DH, Kim RM, Lim YC, Lee HE, Ahn HY, Nam KT. Gamma-glutamylcysteine- and cysteinylglycine-directed growth of chiral gold nanoparticles and their crystallographic analysis. Angew Chem Int Ed. 2020;59(31):12976. https://doi.org/10.1002/anie.202003760.

    Article  CAS  Google Scholar 

  7. Lee HE, Kim RM, Ahn HY, Lee YY, Byun GH, Im SW, Mun J, Rho J, Nam KT. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat Commun. 2020;11(1):263. https://doi.org/10.1038/s41467-019-14117-x.

    Article  CAS  Google Scholar 

  8. Cho NH, Byun GH, Lim YC, Im SW, Kim H, Lee HE, Ahn HY, Nam KT. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano. 2020;14(3):3595. https://doi.org/10.1021/acsnano.9b10094.

    Article  CAS  Google Scholar 

  9. Xu LG, Wang XX, Wang WW, Sun MZ, Choi WJ, Kim JY, Hao CL, Li S, Qu AH, Lu MR, Wu XL, Colombari FM, Gomes WR, Blanco AL, de Moura AF, Guo X, Kuang H, Kotov NA, Xu CL. Enantiomer-dependent immunological response to chiral nanoparticles. Nature. 2022;601(7893):366. https://doi.org/10.1038/s41586-021-04243-2.

    Article  CAS  Google Scholar 

  10. Jiang WF, Qu ZB, Kumar P, Vecchio D, Wang YF, Ma Y, Bahng JH, Bernardino K, Gomes WR, Colombari FM, Lozada-Blanco A, Veksler M, Marino E, Simon A, Murray C, Muniz SR, de Moura AF, Kotov NA. Emergence of complexity in hierarchically organized chiral particles. Science. 2020;368(6491):642. https://doi.org/10.1126/science.aaz7949.

    Article  CAS  Google Scholar 

  11. Kim J-Y, Yeom J, Zhao GP, Calcaterra H, Munn J, Zhang PJ, Kotov N. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J Am Chem Soc. 2019;141(30):11739. https://doi.org/10.1021/jacs.9b00700.

    Article  CAS  Google Scholar 

  12. Wu FX, Tian Y, Luan XX, Lv XL, Li FH, Xu GB, Niu WX. Synthesis of chiral Au nanocrystals with precise homochiral facets for enantioselective surface chemistry. Nano Lett. 2022;22(7):2915. https://doi.org/10.1021/acs.nanolett.2c00094.

    Article  CAS  Google Scholar 

  13. Kelso MV, Tubbesing JZ, Chen QZ, Switzer JA. Epitaxial electrodeposition of chiral metal surfaces on silicon(643). J Am Chem Soc. 2018;140(46):15812. https://doi.org/10.1021/jacs.8b09108.

    Article  CAS  Google Scholar 

  14. Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW. Enantiospecific electrodeposition of a chiral catalyst. Nature. 2003;425(6957):490. https://doi.org/10.1038/nature01990.

    Article  CAS  Google Scholar 

  15. Durán Pachón L, Yosef I, Markus TZ, Naaman R, Avnir D, Rothenberg G. Chiral imprinting of palladium with cinchona alkaloids. Nat Chem. 2009;1(2):160. https://doi.org/10.1038/NCHEM.180.

    Article  Google Scholar 

  16. Goyal A, Paranthaman MP, Schoop U. The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 2004;29(8):552. https://doi.org/10.1557/mrs2004.161.

    Article  CAS  Google Scholar 

  17. Ding QW, Luo Q, Lin L, Fu XP, Wang LS, Yue GH, Lin J, Xie QS, Peng DL. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation. Rare Met. 2022;41(8):2595. https://doi.org/10.1007/s12598-022-01997-0.

    Article  CAS  Google Scholar 

  18. Li CJ, Shan GC, Guo CX, Ma RG. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction. Rare Met. 2023;42(6):1778. https://doi.org/10.1007/s12598-022-02234-4.

    Article  CAS  Google Scholar 

  19. Li L, Shi YX, Hou M, Zhang ZC. Research progress of copper-based materials for electrocatalytic CO2 reduction reaction. Chin J Rare Met. 2022;46(6):681. https://doi.org/10.13373/j.cnki.cjrm.XY21120017.

    Article  Google Scholar 

  20. Ding QW, Luo Q, Lin L, Fu XP, Wang LS, Yue GH, Lin J, Xie QS, Peng DL. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation. Rare Met. 2022;41(8):2595. https://doi.org/10.1007/s12598-022-01997-0.

    Article  CAS  Google Scholar 

  21. Wang F, Li CH, Sun LD, Wu HS, Ming T, Wang JF, Yu JC, Yan CH. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J Am Chem Soc. 2011;133(4):1106. https://doi.org/10.1021/ja1095733.

    Article  CAS  Google Scholar 

  22. Yu Y, Zhang QB, Liu B, Lee JY. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J Am Chem Soc. 2010;132(51):18258. https://doi.org/10.1021/ja107405x.

    Article  CAS  Google Scholar 

  23. Yun QR, Xu J, Wei TC, Ruan QF, Zhu XZ, Kan CK. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. Nanoscale. 2022;14(3):736. https://doi.org/10.1039/d1nr05987d.

    Article  CAS  Google Scholar 

  24. Fang JJ, Liu QM, Kang XW, Chen SW. Selective hydrogenation of 4-nitrostyrene to 4-nitroethylbenzene catalyzed by Pd@Ru core-shell nanocubes. Rare Met. 2022;41(4):1189. https://doi.org/10.1007/s12598-021-01868-0.

    Article  CAS  Google Scholar 

  25. Kim D, Lee YW, Lee SB, Han SW. Convex polyhedral Au@Pd core–shell nanocrystals with high-index facets. Angew Chem Int Ed. 2012;51(1):159. https://doi.org/10.1002/anie.201106899.

    Article  CAS  Google Scholar 

  26. Verma P, Kuwahara Y, Mori K, Yamashita H. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation. J Mater Chem A. 2016;4(26):10142. https://doi.org/10.1039/c6ta01664b.

    Article  CAS  Google Scholar 

  27. Hartland GV. Optical studies of dynamics in noble metal nanostructures. Chem Rev. 2011;111(6):3858. https://doi.org/10.1021/cr1002547.

    Article  CAS  Google Scholar 

  28. Zhang K, Xiang Y, Wu X, Feng L, He W, Liu J, Zhou W, Xie S. Enhanced optical responses of Au@ Pd core/shell nanobars. Langmuir. 2009;25(2):1162. https://doi.org/10.1021/la803060p.

    Article  CAS  Google Scholar 

  29. Chiu CY, Huang MH. Polyhedral Au–Pd core–shell nanocrystals as highly spectrally responsive and reusable hydrogen sensors in aqueous solution. Angew Chem Int Ed. 2013;125(48):12941. https://doi.org/10.1002/ange.201306363.

    Article  Google Scholar 

  30. Wu W, Pauly M. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Mater Adv. 2022;3(1):186. https://doi.org/10.1039/D1MA00915J.

    Article  Google Scholar 

  31. Li FH, Wu FX, Luan XX, Yuan YL, Zhang L, Xu GB, Niu WX. Highly enantioselective electrochemical sensing based on helicoid Au nanoparticles with intrinsic chirality. Sensor Actuat B-Chem. 2022;362:131757. https://doi.org/10.1016/j.snb.2022.131757.

    Article  CAS  Google Scholar 

  32. Cotzias GC, Papavasiliou PS, Gellene R. Modification of parkinsonism: chronic treatment with L-Dopa. N Engl J Med. 1969;280(7):337. https://doi.org/10.1056/NEJM196902132800701.

    Article  CAS  Google Scholar 

  33. Blessing H, Bareiss M, Zettlmeisl H, Schwarz J, Storch A. Catechol-O-methyltransferase inhibition protects against 3,4-dihydroxyphenylalanine (DOPA) toxicity in primary mesencephalic cultures: new insights into levodopa toxicity. Neurochem Int. 2003;42(2):139. https://doi.org/10.1016/S0197-0186(02)00075-X.

    Article  CAS  Google Scholar 

  34. Hensley K, Maidt ML, Pye QN, Stewart CA, Wack M, Tabatabaie T, Floyd RA. Quantitation of protein-bound 3-nitrotyrosine and 3,4-dihydroxyphenylalanine by high-performance liquid chromatography with electrochemical array detection. Anal Biochem. 1997;251(2):187. https://doi.org/10.1006/abio.1997.2281.

    Article  CAS  Google Scholar 

  35. Pagel P, Schubert R, Wolf HU. Development of a method for sample preparation for subsequent identification and measurement of 1,2,3,4-tetrahydroisoquinolines and other potentially neurotoxic compounds by high-performance liquid chromatography with ultraviolet and fluorescence detection in blood plasma of Parkinson’s disease patients. J Chromatogr B. 2000;746(2):283. https://doi.org/10.1016/S0378-4347(00)00347-9.

    Article  CAS  Google Scholar 

  36. Borst C, Holzgrabe U. Enantioseparation of dopa and related compounds by cyclodextrin-modified microemulsion electrokinetic chromatography. J Chromatogr A. 2008;1204(2):191. https://doi.org/10.1016/j.chroma.2008.05.052.

    Article  CAS  Google Scholar 

  37. Shen JS, Zhao SL. Enantiomeric separation of naphthalene-2,3-dicarboxaldehyde derivatized dl-3,4-dihydroxyphenylalanine and optical purity analysis of l-3,4-dihydroxyphenylalanine drug by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A. 2004;1059(1–2):209. https://doi.org/10.1016/j.chroma.2004.09.092.

    Article  CAS  Google Scholar 

  38. Mozziconacci Q, Subelzu N, Schöneich C, Liu Y, Abend A, Wuelfing WP. Probing protein conformation destabilization in sterile liquid formulations through the formation of 3,4-dihydroxyphenylalanine. Mol Pharmaceutics. 2020;17(10):3783. https://doi.org/10.1021/acs.molpharmaceut.0c00554.

    Article  CAS  Google Scholar 

  39. Grigorean G, Lebrilla CB. Enantiomeric analysis of pharmaceutical compounds by ion/molecule reactions. Anal Chem. 2001;73(8):1684. https://doi.org/10.1021/ac001135q.

    Article  CAS  Google Scholar 

  40. Kang YJ, Oh JW, Kim YR, Kim JS, Kim H. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine. Chem Commun. 2010;46(31):5665. https://doi.org/10.1039/c0cc01071e.

    Article  CAS  Google Scholar 

  41. Wang D, Zhao HM, Guo L, Zhang L, Zhao HB, Fang X, Li S, Wang G. Facile synthesis of CuO-Co3O4 prickly-sphere-like composite for non-enzymatic glucose sensors. Rare Met. 2022;41(6):1911. https://doi.org/10.1007/s12598-021-01939-2.

    Article  CAS  Google Scholar 

  42. Chen LS, Chang FX, Meng LC, Li MX, Zhu ZW. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst. 2014;139(9):2243. https://doi.org/10.1039/c4an00098f.

    Article  CAS  Google Scholar 

  43. Dong L, Zhang Y, Duan X, Zhu X, Sun H, Xu J. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: mechanism and model of chiral recognition. Anal chem. 2017;89(18):9695. https://doi.org/10.1021/acs.analchem.7b01095.

    Article  CAS  Google Scholar 

  44. Kang YJ, Oh JW, Kim YR, Kim JS, Kim H. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3, 4-dihydroxyphenylalanine. Chem Commun. 2010;46(31):5665. https://doi.org/10.1039/C0CC01071E.

    Article  CAS  Google Scholar 

  45. Yao FR, Yu WT, Liu C, Su YZ, You YL, Ma H, Qiao RX, Wu CC, Ma CJ, Gao P, Xiao FJ, Zhao JL, Bai XD, Sun ZP, Maruyama S, Wang F, Zhang J, Liu KH. Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nat Nanotech. 2021;16(10):1073. https://doi.org/10.1038/s41565-021-00953-w.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22072144, 22102171 and 21974131) and the Department of Science and Technology of Jilin Province (No. 20200201080JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Hua Li, Qi-Xian Zhang or Wen-Xin Niu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5573 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, FX., Li, FH., Lv, XL. et al. Heteroepitaxial growth of Au@Pd core–shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition. Rare Met. 43, 225–235 (2024). https://doi.org/10.1007/s12598-023-02402-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02402-0

Keywords

Navigation