Skip to main content
Log in

Boost VS2 electrochemical reactive kinetics by regulating crystallographic planes and coupling carbon matrix for high performance sodium-ion storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Vanadium disulfide (VS2) as a typical two-dimensional transition metal chalcogenide has excellent competitiveness for sodium-ion storage due to its wide layer spacing (0.575 nm), high theoretical capacity of 932 mAh·g−1 originating from multi-electron electrochemical redox. However, continuous sodiation process accompanied by crystal structural evolution and collapse cause rapid capacity decaying. Herein, novel few-layer VS2 nanosheets with open (001) crystal planes are in-situ constructed on reduced graphene oxide to solve these issues mentioned above. It indicates that few-layer VS2 provides more Na+ storage activity due to the low Na+ surface migration energy barrier on exposed crystal (001) planes. The flexible and high electronic conductivity of carbon matrix also effectively builds multi-level buffer structure and electron transport kinetics to boost the Na+ insertion/conversion reactive activity on VS2 as well as Na+ pseudocapacitance storage kinetics on edges and defects of nanosheets. Those coupling effects result in high rate capability and long cycling stability as a battery/capacitor anode. It delivers conspicuous high energy density of 81 and 40 Wh·kg−1 at power density of 118 and 10,286 W·kg−1, as well as 80% energy retention rate after 5000 cycles, confirming its great application potential in sodium-based storage devices.

Graphical abstract

摘要

二硫化钒(VS2)作为一种典型的二维过渡金属硫族化合物, 具有较宽的层间距(0.575 nm)和源于多电子电化学氧化还原反应的932 mAh·g−1的理论容量, 在钠离子存储方面具有优异的竞争力。然而, 持续的钠化过程伴随晶体结构的演变和坍塌导致了容量的快速衰减。为了解决上述问题, 本文在还原氧化石墨烯(rGO)上原位制备了具有开放(001)晶面的新型少层VS2纳米片。由于暴露的(001)晶面上较低的Na+表面迁移能垒, 所以层数较少的VS2具有较高的Na+存储活性。碳基体的柔性和高电子导电性也有效地构建了多级缓冲结构和电子传递动力学, 促进了VS2上Na+的插入/转换反应活性以及纳米片边缘和缺陷上Na+的赝电容存储动力学。这些耦合效应使该材料用作电池/电容器负极时具有优秀的倍率性能和长循环稳定性。这种新型钠离子电容器件在功率密度为118和10286 W·kg−1时, 其能量密度分别为81和40 Wh·kg−1, 5000次循环后的保能率为80%, 表明其在钠基储能器件中具有很大的应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tian YS, Zeng GB, Rutt A, Shi T, Kim H, Wang JY, Koettgen J, Sun YZ, Ouyang B, Chen TN, Lun ZY, Rong ZQ, Persson K, Ceder G. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev. 2021;121(3):1623. https://doi.org/10.1021/acs.chemrev.0c00767.

    Article  CAS  Google Scholar 

  2. Wang G, Yu MH, Feng XL. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev. 2021;50(4):2388. https://doi.org/10.1039/d0cs00187b.

    Article  CAS  Google Scholar 

  3. Liang YL, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy. 2020;5(9):646. https://doi.org/10.1038/s41560-020-0655-0.

    Article  CAS  Google Scholar 

  4. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529. https://doi.org/10.1039/C6CS00776G.

    Article  CAS  Google Scholar 

  5. Li YM, Lu YX, Zhao CL, Hu YS, Titirici MM, Li H, Huang XJ, Chen LQ. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017;7:130. https://doi.org/10.1016/j.ensm.2017.01.002.

    Article  Google Scholar 

  6. Zhu YF, Xiao Y, Dou SX, Kang YM, Chou SL. 2021. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. Science. 1(1):13. https://doi.org/10.1016/j.esci.2021.10.003.

  7. Liu P, Han J, Zhu KJ, Dong ZH, Jiao LF. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-Ion storage. Adv Energy Mater. 2020;10(24):2000741. https://doi.org/10.1002/aenm.202000741.

    Article  CAS  Google Scholar 

  8. Sun ZQ, Zhu KJ, Liu P, Chen XC, Li HX, Jiao LF. Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-Ion batteries. Angew Chem Int Ed. 2022;61(42):e202211866. https://doi.org/10.1002/anie.202211866.

    Article  CAS  Google Scholar 

  9. Fan MP, Chen YC, Chen YM, Huang ZX, Wu WL, Wang P, Ke X, Sun SH, Shi ZC. NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Met. 2022;41(4):1294. https://doi.org/10.1007/s12598-021-01890-2.

    Article  CAS  Google Scholar 

  10. Wang HW, Yi H, Zhu CR, Wang XF, Jin FH. Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy. 2015;13:658. https://doi.org/10.1016/j.nanoen.2015.03.033.

    Article  CAS  Google Scholar 

  11. Zhang HW, Hu MX, Lv Q, Huang ZH, Kang FY, Lv RT. Advanced materials for sodium-ion capacitors with superior energy–power properties: progress and perspectives. Small. 2020;16(15):1902843. https://doi.org/10.1002/smll.201902843.

    Article  CAS  Google Scholar 

  12. Ramachandran K, Subburam G, Liu XH, Huang MG, Xu C, Ng DHL, Cui YX, Li GC, Qiu JX, Wang C, Lian JB. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor. Rare Met. 2022;41(7):2481. https://doi.org/10.1007/s12598-022-01992-5.

    Article  CAS  Google Scholar 

  13. Wu YK, Zhong W, Yang QJ, Hao C, Li QL, Xu MW, Bao SJ. Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chem Eng J. 2022;427:130960. https://doi.org/10.1016/j.cej.2021.130960.

    Article  CAS  Google Scholar 

  14. Jiang Y, Song DY, Wu J, Wang ZX, Huang SS, Xu Y, Chen ZW, Zhao B, Zhang JJ. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano. 2019;13(8):9100. https://doi.org/10.1021/acsnano.9b03330.

    Article  CAS  Google Scholar 

  15. Fu LK, Kang CX, Xiong WQ, Tian PF, Cao SY, Wan SY, Chen HY, Zhou CB, Liu QM. WS2 nanosheets@ZIF-67-derived N-doped carbon composite as sodium ion battery anode with superior rate capability. J Colloid Interface Sci. 2021;595:59. https://doi.org/10.1016/j.jcis.2021.03.127.

    Article  CAS  Google Scholar 

  16. Zhang ZW, Zhong XB, Zhang YH, Tang MY, Li S-X, Zhang HH, Hu PF, Liang JF. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 2022;41(1):21. https://doi.org/10.1007/s12598-021-01835-9.

    Article  CAS  Google Scholar 

  17. Zhou JH, Wang L, Yang MY, Wu JH, Chen FJ, Huang WJ, Han N, Ye HL, Zhao FP, Li YY, Li YG. Hierarchical VS2 nanosheet sssemblies: a universal host material for the reversible storage of alkali metal Ions. Adv Mater. 2017;29(35):1702061. https://doi.org/10.1002/adma.201702061.

    Article  CAS  Google Scholar 

  18. Sun RM, Wei QL, Sheng JZ, Shi CW, An QY, Liu SJ, Mai LQ. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy. 2017;35:396. https://doi.org/10.1016/j.nanoen.2017.03.036.

    Article  CAS  Google Scholar 

  19. Wang WH, Sun ZT, Zhang WS, Fan QP, Sun Q, Cui XD, Xiang B. First-principles investigations of vanadium disulfide for lithium and sodium ion battery applications. RSC Adv. 2016;6(60):54874. https://doi.org/10.1039/C6RA07586J.

    Article  CAS  Google Scholar 

  20. Yang CH, Ou X, Xiong XH, Zheng FH, Hu RZ, Chen Y, Liu ML, Huang K. V5S8–graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci. 2017;10(1):107. https://doi.org/10.1039/C6EE03173K.

    Article  CAS  Google Scholar 

  21. Xu X, Zhao RS, Chen B, Wu LS, Zou CJ, Ai W, Zhang H, Huang W, Yu T. Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Adv Mater. 2019;31(17):1900526. https://doi.org/10.1002/adma.201900526.

    Article  CAS  Google Scholar 

  22. Yao L, Gu QF, Yu XB. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano. 2021;15(2):3228. https://doi.org/10.1021/acsnano.0c09898.

    Article  CAS  Google Scholar 

  23. Guo YM, Zhang LJ, Xi Li DG, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Metals. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

  24. Lai WH, Wang YX, Wang JZ, Chou SL, Dou SX. Manipulating 2D few-layer metal sulfides as anode towards enhanced sodium-ion batteries. Batteries Supercaps. 2020;3(3):236. https://doi.org/10.1002/batt.201900143.

    Article  CAS  Google Scholar 

  25. Gan ZH, Yin JY, Xu X, Cheng YH, Yu T. Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 2022;16(4):5131. https://doi.org/10.1021/acsnano.2c00557.

    Article  CAS  Google Scholar 

  26. Zhao B, Liu Qq, Chen Yj, Liu Q, Yu Q, Wu HB. Interface-induced pseudocapacitance in nonporous heterogeneous particles for high volumetric sodium storage. Adv Funct Mater. 2020;30(42):2002019. https://doi.org/10.1002/adfm.202002019.

  27. Wang MS, Xu H, Yang ZL, Yang H, Peng AM, Zhang J, Chen JC, Huang Y, Li X, Cao GZ. SnS nanosheets confined growth by S and N codoped graphene with enhanced pseudocapacitance for sodium-ion capacitors. ACS Appl Mater Inter. 2019;11(44):41363. https://doi.org/10.1021/acsami.9b14098.

    Article  CAS  Google Scholar 

  28. Wang MS, Peng AM, Xu H, Yang ZL, Zhang L, Zhang J, Yang H, Chen JC, Huang Y, Li X. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J Power Sources. 2020;469:228414. https://doi.org/10.1016/j.jpowsour.2020.228414.

  29. Ma XL, Ning GQ, Wang Y, Song XY, Xiao ZH, Hou LQ, Yang W, Gao JS, Li YF. S-doped mesoporous graphene microspheres: a high performance reservoir material for Li-S batteries. Electrochim Acta. 2018;269:83. https://doi.org/10.1016/j.electacta.2018.02.163.

    Article  CAS  Google Scholar 

  30. Ma XL, Zhao L, Song XY, Zhao L, Yu ZQ, Xiao ZH, Wang XJ, Li SP, Cao YM, Ning GQ, Gao JS. Production of S-doped porous graphene via post-treatment with MgSO4 as sulphur source. Chem Eng J. 2019;359:801. https://doi.org/10.1016/j.cej.2018.11.171.

    Article  CAS  Google Scholar 

  31. Zhu WQ, Gao JJ, Song HO, Lin XZ, Zhang SP. Nature of the synergistic effect of N and S co-doped graphene for the enhanced simultaneous determination of toxic pollutants. ACS Appl Mater Inter. 2019;11(47):44545. https://doi.org/10.1021/acsami.9b13211.

    Article  CAS  Google Scholar 

  32. Xu XS, Xu F, Zhang XH, Qu CZ, Zhang JB, Qiu YQ, Zhuang R, Wang HQ. Laser-derived interfacial confinement enables planar growth of 2D SnS2 on graphene for high-flux electron/ion bridging in sodium storage. Nano-Micro Lett. 2022;14(1):91. https://doi.org/10.1007/s40820-022-00829-1.

    Article  CAS  Google Scholar 

  33. Ma MZ, Zhang SP, Wang LF, Yao Y, Shao RW, Shen L, Yu L, Dai JY, Jiang Y, Cheng XL, Wu Y, Wu XJ, Yao XY, Zhang QB, Yu Y. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv Mater. 2021;33(45):2106232. https://doi.org/10.1002/adma.202106232.

    Article  CAS  Google Scholar 

  34. Yu WB, Hu ZY, Jin J, Yi M, Yan M, Li Y, Wang HE, Gao HX, Mai LQ, Hasan T, Xu BX, Peng DL, Van Tendeloo G, Su BL. Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. Natl Sci Rev. 2020;7(6):1046. https://doi.org/10.1093/nsr/nwaa028.

    Article  Google Scholar 

  35. Gao Z, Zhu JD, Rajabpour S, Joshi K, Kowalik M, Croom B, Schwab Y, Zhang LW, Bumgardner C, Brown KR, Burden D, Klett JW, van Duin ACT, Zhigilei LV, Li XD. Graphene reinforced carbon fibers. Sci Adv. 2020;6(17):eaaz4191. https://doi.org/10.1126/sciadv.aaz4191.

  36. Song NN, Gao Z, Li XD. Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness. Sci Adv. 2020;6(42):eaba7016. https://doi.org/10.1126/sciadv.aba7016.

  37. Zhao J, Zhang YZ, Chen JY, Zhang WL, Yuan D, Chua R, Alshareef HN, Ma YW. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage. Adv Energy Mater. 2020;10(18):2000099. https://doi.org/10.1002/aenm.202000099.

    Article  CAS  Google Scholar 

  38. Li JJ, Zhang YM, Gao TL, Han JC, Wang XJ, Hultman B, Xu P, Zhang ZH, Wu G, Song B. A confined “microreactor” synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. J Power Sources. 2018;378:105. https://doi.org/10.1016/j.jpowsour.2017.12.028.

    Article  CAS  Google Scholar 

  39. Kang JL, Xu FC, Zhang C, Li F, Al Hartomy OA, Al Ghamdi A, Wageh S, Zhao GH, Yang TQ, Zhang H. Vanadium disulfide nanosheets synthesized by facile liquid-phase exfoliation for ammonia detection with high selectivity. Adv Electron Mater. 2022;8(4):2100567. https://doi.org/10.1002/aelm.202100567.

    Article  CAS  Google Scholar 

  40. Song CQ, Yu K, Yin HH, Fu H, Zhang ZL, Zhang N, Zhu ZQ. Highly efficient field emission properties of a novel layered VS2/ZnO nanocomposite and flexible VS2 nanosheet. J Mater Chem C. 2014;2(21):4196. https://doi.org/10.1039/C4TC00025K.

    Article  CAS  Google Scholar 

  41. Lu YY, Zhang N, Jiang S, Zhang YD, Zhou M, Tao ZL, Archer LA, Chen J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017;17(6):3668. https://doi.org/10.1021/acs.nanolett.7b00889.

    Article  CAS  Google Scholar 

  42. Dong XY, Xing Z, Zheng GJ, Gao XR, Hong HP, Ju ZC, Zhuang QC. MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochim Acta. 2020;339:135932. https://doi.org/10.1016/j.electacta.2020.135932.

  43. Wu L, Sun RM, Xiong FY, Pei CY, Han K, Peng C, Fan YQ, Yang W, An QY, Mai LQ. A rechargeable aluminum-ion battery based on a VS2 nanosheet cathode. PCCP. 2018;20(35):22563. https://doi.org/10.1039/C8CP04772C.

    Article  CAS  Google Scholar 

  44. Huang X, Qi XY, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41(2):666. https://doi.org/10.1039/c1cs15078b.

    Article  CAS  Google Scholar 

  45. Guo WW, Wu DF. Facile synthesis of VS4/graphene nanocomposites and their visible-light-driven photocatalytic water splitting activities. Int J Hydrogen Energy. 2014;39(30):16832. https://doi.org/10.1016/j.ijhydene.2014.08.088.

    Article  CAS  Google Scholar 

  46. Yang G, Wang HH, Zhang BW, Foo SN, Ma MB, Cao X, Liu J, Ni SB, Srinivasan M, Huang YZ. Superior Li-ion storage of VS4 nanowires anchored on reduced graphene. Nanoscale. 2019;11(19):9556. https://doi.org/10.1039/c9nr01953g.

    Article  CAS  Google Scholar 

  47. Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24. https://doi.org/10.1016/j.jechem.2019.08.003.

    Article  Google Scholar 

  48. Wang MX, Fan LS, Qiu Y, Chen DD, Wu X, Zhao C, Cheng JH, Wang Y, Zhang NQ, Sun KN. Electrochemically active separators with excellent catalytic ability toward high-performance Li–S batteries. J Mater Chem A. 2018;6(25):11694. https://doi.org/10.1039/C8TA02757A.

    Article  CAS  Google Scholar 

  49. He FY, Tang C, Zhu GJ, Liu YD, Du AJ, Zhang QB, Wu MH, Zhang HJ. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci China Chem. 2021;64(6):964. https://doi.org/10.1007/s11426-020-9942-9.

    Article  CAS  Google Scholar 

  50. Ramalingam V, Varadhan P, Fu HC, Kim H, Zhang DL, Chen SM, Song L, Ma D, Wang Y, Alshareef HN, He JH. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv Mater. 2019;31(48):1903841. https://doi.org/10.1002/adma.201903841.

    Article  CAS  Google Scholar 

  51. Luo NN, Si C, Duan WH. Structural and electronic phase transitions in ferromagnetic monolayer VS2 induced by charge doping. Phys Rev B. 2017;95(20):205432. https://doi.org/10.1103/PhysRevB.95.205432.

  52. van Efferen C, Berges J, Hall J, van Loon E, Kraus S, Schobert A, Wekking T, Huttmann F, Plaar E, Rothenbach N, Ollefs K, Arruda LM, Brookes N, Schönhoff G, Kummer K, Wende H, Wehling T, Michely T. A full gap above the Fermi level: the charge density wave of monolayer VS2. Nat Commun. 2021;12(1):6837. https://doi.org/10.1038/s41467-021-27094-x.

    Article  CAS  Google Scholar 

  53. Putungan DB, Lin SH, Kuo JL. Metallic VS2 monolayer polytypes as potential sodium-Ion battery anode via ab initio random structure searching. ACS Appl Mater Inter. 2016;8(29):18754. https://doi.org/10.1021/acsami.6b03499.

    Article  CAS  Google Scholar 

  54. Zhang X, He Q, Xu XM, Xiong TF, Xiao ZT, Meng JS, Wang XP, Wu L, Chen JH, Mai LQ. Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries. Adv Energy Mater. 2020;10(22):1904118. https://doi.org/10.1002/aenm.201904118.

    Article  CAS  Google Scholar 

  55. Xie XC, Shuai HL, Wu X, Huang KJ, Wang LN, Wang RM, Chen Y. Engineering ultra-enlarged interlayer carbon-containing vanadium disulfide composite for high-performance sodium and potassium ion storage. J Alloys Compd. 2020;847:156288. https://doi.org/10.1016/j.jallcom.2020.156288.

  56. Zheng JM, Yan PF, Kan WH, Wang CM, Manthiram A. A spinel-integrated P2-type layered composite: high-rate cathode for sodium-ion batteries. J Electrochem Soc. 2016;163(3):A584. https://doi.org/10.1149/2.0041605jes.

    Article  CAS  Google Scholar 

  57. Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc. 2003;150(3):A292. https://doi.org/10.1149/1.1543948.

    Article  CAS  Google Scholar 

  58. Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124(10):1569. https://doi.org/10.1149/1.2133112.

    Article  CAS  Google Scholar 

  59. Hu JZ, Liu WJ, Zheng JH, Li GC, Bu YF, Qiao F, Lian JB, Zhao Y. Coral-like cobalt selenide/carbon nanosheet arrays attached on carbon nanofibers for high-rate sodium-ion storage. Rare Metals. 2022;42(3):916. https://doi.org/10.1007/s12598-022-02146-3.

  60. Fang YZ, Hu R, Liu BY, Zhang YY, Zhu K, Yan J, Ye K, Cheng K, Wang GL, Cao DX. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J Mater Chem A. 2019;7(10):5363. https://doi.org/10.1039/C8TA12069B.

    Article  CAS  Google Scholar 

  61. Xu DM, Wang HW, Qiu RY, Wang Q, Mao ZF, Jiang YJ, Wang R, He BB, Gong YS, Li DB, Hu XL. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-storage and robust flexibility for sodium-ion hybrid capacitors. Energy Storage Mater. 2020;28:91. https://doi.org/10.1016/j.ensm.2020.03.002.

    Article  Google Scholar 

  62. Fan RZ, Zhao CY, Ma JH, Lei SL, Liang GJ, He T, Zhu GC, Cai YR. Boosting reaction kinetics and improving long cycle life in lamellar VS2/MoS2 heterojunctions for superior sodium storage performance. J Mater Chem A. 2022;10(2):939. https://doi.org/10.1039/D1TA09612E.

    Article  CAS  Google Scholar 

  63. Wu HY, Xu N, Jiang ZH, Zheng AY, Shi QF, Lv RG, Ni LB, Diao GW, Chen M. Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics. Chem Eng J. 2022;427:131002. https://doi.org/10.1016/j.cej.2021.131002.

  64. Huang PF, Ying HJ, Zhang SL, Zhang Z, Han WQ. Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv Energy Mater. 2022;12(39):2202052. https://doi.org/10.1002/aenm.202202052.

    Article  CAS  Google Scholar 

  65. Liu SN, Cai ZY, Zhou J, Pan AQ, Liang SQ. Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J Mater Chem A. 2016;4(47):18278. https://doi.org/10.1039/C6TA08472A.

    Article  CAS  Google Scholar 

  66. Chen Z, Augustyn V, Jia XL, Xiao QF, Dunn B, Lu YF. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano. 2012;6(5):4319. https://doi.org/10.1021/nn300920e.

    Article  CAS  Google Scholar 

  67. Tong ZQ, Liu SK, Zhou Y, Zhao JP, Wu YP, Wang YS, Li Y. Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 2018;13:223. https://doi.org/10.1016/j.ensm.2017.12.005.

    Article  Google Scholar 

  68. Kurra N, Alhabeb M, Maleski K, Wang CH, Alshareef HN, Gogotsi Y. Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 2018;3(9):2094. https://doi.org/10.1021/acsenergylett.8b01062.

    Article  CAS  Google Scholar 

  69. Zhao X, Cai W, Yang Y, Song XD, Neale Z, Wang HE, Sui JH, Cao GZ. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy. 2018;47:224. https://doi.org/10.1016/j.nanoen.2018.03.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52072322 and 51604250) and Sichuan Science and Technology Program (Nos. 2022YFG0294 and 2019-GH02-00052-HZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Shan Wang or Xing Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2968 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Wang, MS., Chen, L. et al. Boost VS2 electrochemical reactive kinetics by regulating crystallographic planes and coupling carbon matrix for high performance sodium-ion storage. Rare Met. 43, 98–112 (2024). https://doi.org/10.1007/s12598-023-02399-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02399-6

Keywords

Navigation