Skip to main content

Advertisement

Log in

Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Traditional theoretical and empirical calculation methods can guide the design of β- and metastable β-alloys for bio-titanium. However, it is still difficult to obtain novel near-β-Ti alloys with low modulus. This study developed a method that combines machine learning with calculation of phase diagrams (CALPHAD) to facilitate the design of near-β-Ti alloys. An elastic modulus database of Ti–Nb–Zr–Mo–Ta–Sn system was constructed first, and then three features (the electron to atom ratio, mean absolute deviation of atom mass, and mean electronegativity) were selected as the key factors of modulus by performing a three-step feature selection. With these features, a highly accurate model was built for predicting the modulus of near-β-Ti alloys. To further ensure the accuracy of modulus prediction, machine learning with the elastic constants calculated was leveraged by CALPHAD database. The root mean square error of the well-trained model can be as low as 6.75 GPa. Guided by the prediction of machine learning and CALPHAD, three novel near-β-Ti alloys with elastic modulus below 50 GPa were successfully designed in this study. The best candidate alloy (Ti–26Nb–4Zr–4Sn–1Mo–Ta) exhibits an ultra-low modulus (36.6 GPa) after cold rolling with a thickness reduction of 20%. Our method can greatly save time and resources in the development of novel Ti alloys, and experimental verifications have demonstrated the reliability of this method.

Graphical abstract

摘要

传统的理论和计算方法可以指导用于生物医疗的β和亚稳态β钛合金设计. 然而, 这些方法仍然难以获得具有低模量的新型近β钛合金. 本研究开发了一种将机器学习与相图计算 (CALPHAD) 相结合的方法, 以促进近 β钛合金的设计. 我们首先构建了Ti–Nb–Zr–Mo–Ta–Sn体系的弹性模量数据库, 然后通过执行三步特征选择方法, 选出了三个特征 (电子原子比, 原子质量平均绝对误差和平均电负性) 作为模量的关键因素. 利用这些特征, 我们建立了一个高精度模型来预测近β钛合金的模量. 为了进一步确保模量预测的准确性, 我们利用机器学习和 CALPHAD 数据库计算的弹性常数. 模型经训练后的模型均方根误差可低至 6.75 GPa. 在机器学习和 CALPHAD的指导下, 我们成功设计了三种弹性模量低于 50 GPa 的新型近 β钛合金. 最佳候选合金 (Ti–26Nb–4Zr–4Sn–1Mo–Ta) 在冷轧至厚度减少20%后表现出超低模量 (36.6 GPa). 我们的方法可以大大节省开发新型钛合金的时间和资源, 后续的实验验证了该方法的可靠性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rodriguez-Contreras A, Punset M, Calero JA, Gil FJ, Ruperez E, Manero JM. Powder metallurgy with space holder for porous titanium implants: a review. J Mater Sci Technol. 2021;76:129. https://doi.org/10.1016/j.jmst.2020.11.005.

    Article  CAS  Google Scholar 

  2. Savio D, Bagno A. When the total hip replacement fails: a review on the stress-shielding effect. Processes. 2022;10(3):612. https://doi.org/10.3390/pr10030612.

    Article  CAS  Google Scholar 

  3. Callioglu S, Acar P. Design of beta-titanium microstructures for implant materials. Mater Sci Eng C. 2020;110:110715. https://doi.org/10.1016/j.msec.2020.110715.

    Article  CAS  Google Scholar 

  4. Park J, Lakes RS. Biomaterials: an introduction. Edited. New York: Springer Science & Business Media. 2007. 161.

  5. Davis J. Materials for medical devices. Ohio: ASM Handbook Series. 2003. 63.

  6. Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1612. https://doi.org/10.1016/S0142-9612(97)00146-4.

    Article  Google Scholar 

  7. Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β titanium alloys as biomedical materials. Int Mater Rev. 2021;66(2):114. https://doi.org/10.1080/09506608.2020.1735829.

    Article  CAS  Google Scholar 

  8. Shao L, Du Y, Dai K, Wu H, Wang Q, Liu J, Tang Y, Wang L. β-Ti alloys for orthopedic and dental applications: a review of progress on improvement of properties through surface modification. Coatings. 2021;11(12):1446. https://doi.org/10.3390/coatings11121446.

    Article  CAS  Google Scholar 

  9. Hanada S, Masahashi N, Semboshi S, Jung TK. Low Young’s modulus of cold groove-rolled β Ti–Nb–Sn alloys for orthopedic applications. Mater Sci Eng A. 2021;802:140645. https://doi.org/10.1016/j.msea.2020.140645.

    Article  CAS  Google Scholar 

  10. Meng Q, Wang K, Li H, Guo S, Wei F, Qi J, Sui Y, Zhao X. Single crystal shear moduli of β-phase stabilized by thermomechanical treatment in TiNbSn alloys with ultralow elastic modulus. Mater Lett. 2021;285:129103. https://doi.org/10.1016/j.matlet.2020.129103.

    Article  CAS  Google Scholar 

  11. Wu CT, Lin PH, Huang SY, Tseng YJ, Chang HT, Li SY, Yen HW. Revisiting alloy design of low-modulus biomedical β-Ti alloys using an artificial neural network. Materialia. 2022;21:101313. https://doi.org/10.1016/j.mtla.2021.101313.

    Article  CAS  Google Scholar 

  12. Li H, Cai Q, Li S, Xu H. Effects of Mo equivalent on the phase constituent, microstructure and compressive mechanical properties of Ti–Nb–Mo–Ta alloys prepared by powder metallurgy. J Mater Res Technol. 2022;16:588. https://doi.org/10.1016/j.jmrt.2021.12.054.

    Article  CAS  Google Scholar 

  13. Hao Y, Li S, Sun S, Zheng C, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9 Sn for biomedical applications. Acta Biomater. 2007;3(2):277. https://doi.org/10.1016/j.actbio.2006.11.002.

    Article  CAS  Google Scholar 

  14. Li X, Wang XN, Liu K, Cao GH, Li MB, Zhu ZS, Wu SJ. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength. J Mater Sci Technol. 2022;107:227. https://doi.org/10.1016/j.jmst.2021.08.031.

    Article  CAS  Google Scholar 

  15. Sun X, Zhang H, Wang D, Sun Q, Zhao S, Lu S, Li W, Vitos L, Ding X. Large recoverable strain with suitable transition temperature in TiNb-based multicomponent shape memory alloys: first-principles calculations. Acta Mater. 2021;221:117366. https://doi.org/10.1016/j.actamat.2021.117366.

    Article  CAS  Google Scholar 

  16. Wang K, Wu D, Wang D, Deng Z, Tian Y, Zhang L, Liu L. Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy. Mater Sci Eng A. 2022;829:142151. https://doi.org/10.1016/j.msea.2021.142151.

    Article  CAS  Google Scholar 

  17. Wang K, Deng Z, Tian Y, Zhang L, Liu L. Effect of cold rolling and solution treatment on β stability and mechanical properties of a metastable β-Ti alloy. Mater Sci Eng A. 2022;861:144366. https://doi.org/10.1016/j.msea.2022.144366.

    Article  CAS  Google Scholar 

  18. Wu CT, Chang HT, Wu CY, Chen SW, Huang SY, Huang M, Pan YT, Bradbury P, Chou J, Yen HW. Machine learning recommends affordable new Ti alloy with bone-like modulus. Mater Today. 2020;34:41. https://doi.org/10.1016/j.mattod.2019.08.008.

    Article  CAS  Google Scholar 

  19. Yang F, Li Z, Wang Q, Jiang B, Yan B, Zhang P, Xu W, Dong C, Liaw PK. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. npj Comput Mater. 2020;6(1):1. https://doi.org/10.1038/s41524-020-00372-w.

    Article  CAS  Google Scholar 

  20. Ling J, Chen W, Sheng Y, Li W, Zhang L, Du Y. A MGI-oriented investigation of the Young’s modulus and its application to the development of a novel Ti-Nb-Zr-Cr bio-alloy. Mater Sci Eng C. 2020. https://doi.org/10.1016/j.msec.2019.110265.

    Article  Google Scholar 

  21. Liang J, Liu L, Xu G, Wang X, Zhang L, Shi X, Tao X. Compositional screening of Zr-Nb-Mo alloys with CALPHAD-type model for promising bio-medical implants. Calphad. 2017;56:196. https://doi.org/10.1016/j.calphad.2017.01.001.

    Article  CAS  Google Scholar 

  22. Wang X, Zhang L, Guo Z, Jiang Y, Tao X, Liu L. Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling. J Mech Behav Biomed Mater. 2016;62:310. https://doi.org/10.1016/j.jmbbm.2016.04.040.

    Article  CAS  Google Scholar 

  23. Marker C, Shang SL, Zhao JC, Liu ZK. Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling. Comput Mater Sci. 2017;140:121. https://doi.org/10.1016/j.commatsci.2017.08.037.

    Article  CAS  Google Scholar 

  24. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A. 1952;65(5):349. https://doi.org/10.1088/0370-1298/65/5/307.

    Article  Google Scholar 

  25. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  CAS  Google Scholar 

  26. Grimvall G, Magyari-Köpe B, Ozoliņš V, Persson KA. Lattice instabilities in metallic elements. Rev Mod Phys. 2012;84(2):945. https://doi.org/10.1103/RevModPhys.84.945.

    Article  CAS  Google Scholar 

  27. Born M, Huang K, Lax M. Dynamical theory of crystal lattices. Am J Phy. 1955. https://doi.org/10.1017/S0305004100017138.

    Article  Google Scholar 

  28. Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Nakajima H. Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals. Acta Mater. 2008;56(12):2856. https://doi.org/10.1016/j.actamat.2008.02.017.

    Article  CAS  Google Scholar 

  29. Meng Q, Zhang J, Huo Y, Sui Y, Zhang J, Guo S, Zhao X. Design of low modulus β-type titanium alloys by tuning shear modulus C44. J Alloys Compd. 2018;745:579. https://doi.org/10.1016/j.jallcom.2018.02.259.

    Article  CAS  Google Scholar 

  30. Meng Q, Guo S, Ren X, Xu H, Zhao X. Possible contribution of low shear modulus C44 to the low Young’s modulus of Ti-36Nb-5Zr alloy. Appl Phys Lett. 2014;105(13):131907. https://doi.org/10.1063/1.4896976.

    Article  CAS  Google Scholar 

  31. Hao YL, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1–2):112. https://doi.org/10.1016/j.msea.2006.09.051.

    Article  CAS  Google Scholar 

  32. Matsumoto H, Watanabe S, Hanada S. Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans. 2005;46(5):1070. https://doi.org/10.2320/matertrans.46.1070.

    Article  CAS  Google Scholar 

  33. Kuroda D, Niinomi M, Morinaga M. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. 1998;243(1–2):244. https://doi.org/10.1016/S0921-5093(97)00808-3.

    Article  Google Scholar 

  34. Omran AN, Woo KD, Lee HB. Mechanical properties of β–Ti-35Nb-2.5Sn alloy synthesized by mechanical alloying and pulsed current activated sintering. Metall Mater Trans A. 2012;43(12):4866. https://doi.org/10.1007/s11661-012-1298-y.

    Article  CAS  Google Scholar 

  35. Wang Q, Dong C, Liaw PK. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α + β)] phase-boundary slopes. Metall Mater Trans A. 2015;46(8):3440. https://doi.org/10.1007/s11661-015-2923-3.

    Article  CAS  Google Scholar 

  36. Ozan S, Lin J, Li Y, Ipek R, Wen C. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater. 2015;20:176. https://doi.org/10.1016/j.actbio.2015.03.023.

    Article  CAS  Google Scholar 

  37. Hanada S, Masahashi N, Jung TK. Effect of stress-induced α" martensite on Young’s modulus of β Ti–33.6Nb–4Sn alloy. Mater Sci Eng A. 2013;588:403. https://doi.org/10.1016/j.msea.2013.09.053.

    Article  CAS  Google Scholar 

  38. Wang Y, Zhao J, Dai S, Chen F, Yu X, Zhang Y. Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti-30Nb-5Ta-6Zr alloy. J Mech Behav Biomed Mater. 2013;27:33. https://doi.org/10.1016/j.jmbbm.2013.06.006.

    Article  CAS  Google Scholar 

  39. Dai SJ, Wang Y, Chen F, Yu XQ, Zhang YF. Influence of Zr content on microstructure and mechanical properties of implant Ti–35Nb–4Sn–6Mo–xZr alloys. Trans Nonferrous Met Soc China. 2013;23(5):1299. https://doi.org/10.1016/S1003-6326(13)62597-2.

    Article  CAS  Google Scholar 

  40. Jung TK, Semboshi S, Masahashi N, Hanada S. Mechanical properties and microstructures of beta Ti-25Nb-11Sn ternary alloy for biomedical applications. Mater Sci Eng C. 2013;33(3):1629. https://doi.org/10.1016/j.msec.2012.12.072.

    Article  CAS  Google Scholar 

  41. Ozaki T, Matsumoto H, Watanabe S. Beta Ti alloys with low Young’s modulus. Mater Trans. 2004;45:2776. https://doi.org/10.2320/matertrans.45.2776.

    Article  CAS  Google Scholar 

  42. Kent D, Wang G, Yu Z, Dargusch MS. Pseudoelastic behaviour of a β Ti–25Nb–3Zr–3Mo–2Sn alloy. Mater Sci Eng A. 2010;527(9):2246. https://doi.org/10.1016/j.msea.2009.11.059.

    Article  CAS  Google Scholar 

  43. Li Q, Niinomi M, Nakai M, Cui Z, Zhu S, Yang X. Effect of Zr on super-elasticity and mechanical properties of Ti–24at% Nb–(0, 2, 4)at% Zr alloy subjected to aging treatment. Mater Sci Eng A. 2012;536:197. https://doi.org/10.1016/j.msea.2011.12.103.

    Article  CAS  Google Scholar 

  44. Ning C, Ding D, Dai K, Zhai W, Chen L. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Biomed Mater. 2010;5(4):045006. https://doi.org/10.1088/1748-6041/5/4/045006.

    Article  CAS  Google Scholar 

  45. Niinomi M, Akahori T, Nakai M. In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system beta-type titanium alloy for biomedical applications. Mater Sci Eng C. 2008;28(3):406. https://doi.org/10.1016/j.msec.2007.04.028.

    Article  CAS  Google Scholar 

  46. Zhao X, Niinomi M, Nakai M, Ishimoto T, Nakano T. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater Sci Eng C. 2011;31(7):1436. https://doi.org/10.1016/j.msec.2011.05.013.

    Article  CAS  Google Scholar 

  47. Sakaguchi N, Mitsuo N, Akahori T, Saito T, Furuta T. Effects of alloying elements on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical applications. Mater Sci Forum. 2004;449–452:1269. https://doi.org/10.4028/www.scientific.net/MSF.449-452.1269.

    Article  Google Scholar 

  48. Nnamchi PS, Obayi CS, Todd I, Rainforth MW. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. J Mech Behav Biomed Mater. 2016;60:68. https://doi.org/10.1016/j.jmbbm.2015.12.023.

    Article  CAS  Google Scholar 

  49. Chang LL, Wang YD, Ren Y. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young’s modulus. Mater Sci Eng A. 2016;651:442. https://doi.org/10.1016/j.msea.2015.11.005.

    Article  CAS  Google Scholar 

  50. Dai S, Wang Y, Chen F, Yu X, Zhang Y. Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software. Trans Nonferrous Met Soc China. 2013;23(10):3027. https://doi.org/10.1016/S1003-6326(13)62829-0.

    Article  CAS  Google Scholar 

  51. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater. 2010;3(8):565. https://doi.org/10.1016/j.jmbbm.2010.07.001.

    Article  CAS  Google Scholar 

  52. Málek J, Hnilica F, Veselý J, Smola B, Bartáková S, Vaněk J. The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta–Zr alloys. Mater Des. 2012;35:731. https://doi.org/10.1016/j.matdes.2011.10.030.

    Article  CAS  Google Scholar 

  53. Bertrand E, Gloriant T, Gordin DM, Vasilescu E, Drob P, Vasilescu C, Drob SI. Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy. J Mech Behav Biomed Mater. 2010;3(8):559. https://doi.org/10.1016/j.jmbbm.2010.06.007.

    Article  CAS  Google Scholar 

  54. Tong YX, Guo B, Zheng YF, Chung CY, Ma LW. Effects of Sn and Zr on the microstructure and mechanical properties of Ti-Ta-based shape memory alloys. J Mater Eng Perform. 2011;20(4–5):762. https://doi.org/10.1007/s11665-010-9817-8.

    Article  CAS  Google Scholar 

  55. Gabriel SB, Panaino JVP, Santos ID. Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications. J Alloys Compd. 2012;536:S208. https://doi.org/10.1016/j.jallcom.2011.11.035.

    Article  CAS  Google Scholar 

  56. Jiang B, Wang Q, Wen D, Xu F, Chen G, Dong C, Sun L, Liaw PK. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus. Mater Sci Eng A. 2017;687:1. https://doi.org/10.1016/j.msea.2017.01.047.

    Article  CAS  Google Scholar 

  57. Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S, Petrzhik M, Filonov M. Bulk and porous metastable beta Ti–Nb–Zr (Ta) alloys for biomedical applications. Mater Sci Eng C. 2011;31(3):643. https://doi.org/10.1016/j.msec.2010.12.008.

    Article  CAS  Google Scholar 

  58. Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477. https://doi.org/10.1016/j.scriptamat.2006.04.022.

    Article  CAS  Google Scholar 

  59. Tegner BE, Zhu L, Ackland GJ. Relative strength of phase stabilizers in titanium alloys. Phys Rev B. 2012;85(21):214106. https://doi.org/10.1103/PhysRevB.85.214106.

    Article  CAS  Google Scholar 

  60. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559(7715):547. https://doi.org/10.1038/s41586-018-0337-2.

    Article  CAS  Google Scholar 

  61. Sidhu SS, Singh H, Gepreel MAH. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater Sci Eng C. 2021;121:111661. https://doi.org/10.1016/j.msec.2020.111661.

    Article  CAS  Google Scholar 

  62. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10(8):1903242. https://doi.org/10.1002/aenm.201903242.

    Article  CAS  Google Scholar 

  63. Deringer VL, Caro MA, Csányi G. Machine learning interatomic potentials as emerging tools for materials science. Adv Mater. 2019;31(46):1902765. https://doi.org/10.1002/adma.201902765.

    Article  CAS  Google Scholar 

  64. Schmidt J, Marques MR, Botti S, Marques MA. Recent advances and applications of machine learning in solid-state materials science. npj Comput Mater. 2019;5(1):1. https://doi.org/10.1038/s41524-019-0221-0.

    Article  Google Scholar 

  65. Wen C, Zhang Y, Wang C, Xue D, Bai Y, Antonov S, Dai L, Lookman T, Su Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019;170:109. https://doi.org/10.1016/j.actamat.2019.03.010.

    Article  CAS  Google Scholar 

  66. Shen C, Wang C, Wei X. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Mater. 2019;179:201. https://doi.org/10.1016/j.actamat.2019.08.033.

    Article  CAS  Google Scholar 

  67. Roy A, Babuska T, Krick B, Balasubramanian G. Machine learned feature identification for predicting phase and Young’s modulus of low-, medium-and high-entropy alloys. Scr Mater. 2020;185:152. https://doi.org/10.1016/j.scriptamat.2020.04.016.

    Article  CAS  Google Scholar 

  68. Meredig B, Agrawal A, Kirklin S, Saal JE, Doak JW, Thompson A, Zhang K, Choudhary A, Wolverton C. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B. 2014;89(9):094104. https://doi.org/10.1103/PhysRevB.89.094104.

    Article  CAS  Google Scholar 

  69. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388. https://doi.org/10.1093/nar/gkaa971.

    Article  CAS  Google Scholar 

  70. Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans. 2002;43(12):2978. https://doi.org/10.2320/matertrans.43.2978.

    Article  CAS  Google Scholar 

  71. Yang Y, Castany P, Cornen M, Prima F, Li S, Hao Y, Gloriant T. Characterization of the martensitic transformation in the superelastic Ti–24Nb–4Zr–8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis. Acta Mater. 2015;88:25. https://doi.org/10.1016/j.actamat.2015.01.039.

    Article  CAS  Google Scholar 

  72. Plaine AH, da Silva MR, Bolfarini C. Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J Mater Res Technol. 2019;8(5):3852. https://doi.org/10.1016/j.jmrt.2019.06.047.

    Article  CAS  Google Scholar 

  73. Meng Q, Huo YF, Ma W, Sui YW, Zhang JY, Guo S, Zhao XQ. Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation. Rare Met. 2018;37(9):789. https://doi.org/10.1007/s12598-018-1055-5.

    Article  CAS  Google Scholar 

  74. Zhang SZ, Cui H, Li MM, Yu H, Vitos L, Yang R, Hu QM. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM= V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys. Mater Des. 2016;110:80. https://doi.org/10.1016/j.matdes.2016.07.120.

    Article  CAS  Google Scholar 

  75. Lee T, Lee S, Kim IS, Moon YH, Kim HS, Park CH. Breaking the limit of Young’s modulus in low-cost Ti–Nb–Zr alloy for biomedical implant applications. J Alloys Compd. 2020;828:154401. https://doi.org/10.1016/j.jallcom.2020.154401.

    Article  CAS  Google Scholar 

  76. Lan C, Wu Y, Guo L, Chen H, Chen F. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy. J Mater Sci Technol. 2018;34(5):788. https://doi.org/10.1016/j.jmst.2017.04.017.

    Article  CAS  Google Scholar 

  77. Liang S. Review of the design of titanium alloys with low elastic modulus as implant materials. Adv Eng Mater. 2020;22(11):2000555. https://doi.org/10.1002/adem.202000555.

    Article  CAS  Google Scholar 

  78. Mott NF. A theory of work-hardening of metal crystals. Philos Mag. 1952;43(346):1151. https://doi.org/10.1080/14786441108521024.

    Article  Google Scholar 

  79. Friedel JXLVI. Anomaly in the rigidity modulus of copper alloys for small concentrations. Philos Mag. 1953;44(351):444. https://doi.org/10.1080/14786440408520327.

    Article  CAS  Google Scholar 

  80. Yang Y, Castany P, Cornen M, Thibon I, Prima F, Gloriant T. Texture investigation of the superelastic Ti–24Nb–4Zr–8Sn alloy. J Alloys Compd. 2014;591:85. https://doi.org/10.1016/j.jallcom.2013.12.207.

    Article  CAS  Google Scholar 

  81. Xu Y, Yi D, Liu H, Wu X, Wang B, Yang F. Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications. Mater Sci Eng A. 2012;547:64. https://doi.org/10.1016/j.msea.2012.03.081.

    Article  CAS  Google Scholar 

  82. Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T. First-principles calculations for development of low elastic modulus Ti alloys. Phys Rev B. 2004;70(17):174113. https://doi.org/10.1103/PhysRevB.70.174113.

    Article  CAS  Google Scholar 

  83. Li CX, Luo HB, Hu QM, Yang R, Yin FX, Umezawa O, Vitos L. Lattice parameters and relative stability of α" phase in binary titanium alloys from first-principles calculations. Solid State Commun. 2013;159:70. https://doi.org/10.1016/j.ssc.2013.01.026.

    Article  CAS  Google Scholar 

  84. Zhang H, Fu H, He X, Wang C, Jiang L, Chen LQ, Xie J. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater. 2020;200:803. https://doi.org/10.1016/j.actamat.2020.09.068.

    Article  CAS  Google Scholar 

  85. Pearson RG. Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc. 1985;107(24):6801. https://doi.org/10.1021/ja00310a009.

    Article  CAS  Google Scholar 

  86. Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Mater Sci Rep. 1993;9(7–8):251. https://doi.org/10.1016/0920-2307(93)90001-U.

    Article  CAS  Google Scholar 

  87. Hu QM, Li SJ, Hao YL, Yang R, Johansson B, Vitos L. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations. Appl Phys Lett. 2008;93(12):121902. https://doi.org/10.1063/1.2988270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52071339), the Natural Science Foundation of Hunan Province, China (No. 2020JJ4739) and Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), China (No. 201009-K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Xin Wang or Li-Bin Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Tian, YY., Zhang, LG. et al. Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys. Rare Met. 43, 309–323 (2024). https://doi.org/10.1007/s12598-023-02333-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02333-w

Keywords

Navigation