Skip to main content
Log in

Fe-based metallic glass as heterogeneous Fenton-like catalyst for azo dyes degradation: effect of inorganic anions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metallic glasses (MGs) are promising heterogeneous catalysts in water remediation, due to their superior efficiency, selectivity, reusability and corrosion resistance. However, few works are focused on the influence of inorganic anions that are abundant in wastewater. Herein, four common inorganic anions were added in a heterogeneous Fenton-like system (Fe–MG/H2O2) to study inorganic anions’ influence on MGs’ catalytic performance during methylene blue (MB) degradation. Evidence demonstrated that chloride ions and dihydrogen phosphate ions had an adverse effect on the catalytic performance of Fe–MG, whereas Fe–MG/H2O2 system sustained high efficiency in the presence of sulfate ions and nitrate ions during the Fenton-like process. By studying the structure, surface morphology, and evolution of active species, it was found that inorganic anions had a significant effect on the surface morphology of Fe–MG and the generation of active species. This work will provide essential references for MGs as heterogeneous catalysts in practical applications.

Graphical abstract

摘要

非晶(MGs)是一种很有前景的非均相催化剂,在水处理过程中展现出了优异的处理效率、选择性、可重复使用性和耐腐蚀性。然而,很少有工作关注废水中丰富的无机阴离子对水处理过程的影响。本文通过在非均相类Fenton体系(Fe-MG/H2O2)中添加四种常见的无机阴离子,研究无机阴离子在MGs对亚甲基蓝(MB)降解过程中催化性能的影响。研究结果表明,氯离子和磷酸二氢根离子对Fe-MG的催化性能会产生不利影响,而Fe-MG/H2O2体系在Fenton过程中存在硫酸根离子和硝酸根离子时,降解过程仍能保持高效。通过研究结构、表面形态和活性物种的演化,发现无机阴离子对Fe-MG的表面形态和活性物种的生成有着重要影响。这项工作将为MGs作为非均相催化剂的实际应用提供重要参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lan S, Zhu L, Wu ZD, Gu L, Zhang QH, Kong HH, Liu JZ, Song RY, Liu SN, Sha G, Wang YG, Liu Q, Liu W, Wang PY, Liu CT, Ren Y, Wang XL. A medium-range structure motif linking amorphous and crystalline states. Nat Mater. 2021;20(10):1347. https://doi.org/10.1038/s41563-021-01011-5.

    Article  CAS  Google Scholar 

  2. Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410(6825):259. https://doi.org/10.1038/35065704.

    Article  CAS  Google Scholar 

  3. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature. 2006;439(7075):419. https://doi.org/10.1038/nature04421.

    Article  CAS  Google Scholar 

  4. Qin CL, Zheng DH, Hu QF, Zhang XM, Wang ZF, Li YY, Zhu JS, Ou JZ, Yang CH, Wang YC. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl Mater Today. 2020;19:100539. https://doi.org/10.1016/j.apmt.2019.100539.

    Article  Google Scholar 

  5. Tian L, Li CY, Zhai JS, Lu Y, Kou SZ. Progress in functional research of amorphous alloys. Chin J Rare Met. 2021;45(8):998. https://doi.org/10.13373/j.cnki.cjrm.XY20040022.

    Article  Google Scholar 

  6. Pei CQ, Chen SQ, Zhao TC, Li M, Cui ZT, Sun BA, Hu SG, Lan S, Hahn H, Feng T. Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance. Adv Mater. 2022;34(26):2200850. https://doi.org/10.1002/adma.202200850.

    Article  CAS  Google Scholar 

  7. Guo H, Li J, Zou XR, Wang HS, Kang A, Zhou H, Li MJ, Zhao XY. Fabrication of GO-TiO2/(Ca, Y)F2:Tm, Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Met. 2022;41(2):650. https://doi.org/10.1007/s12598-021-01831-z.

    Article  CAS  Google Scholar 

  8. Chen SQ, Yang GN, Luo ST, Yin SJ, Jia JL, Li Z, Gao SH, Shao Y, Yao KF. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. J Mater Chemi A. 2017;5(27):14230. https://doi.org/10.1039/c7ta01206c.

    Article  CAS  Google Scholar 

  9. Chen SQ, Li M, Ji QM, Chen X, Lan S, Feng T, Yao KF. Functional 3D nanoporous Fe-based alloy from metallic glass for high-efficiency water splitting and wastewater treatment. J Non-Cryst Solids. 2021;571:121070. https://doi.org/10.1016/j.jnoncrysol.2021.121070.

    Article  CAS  Google Scholar 

  10. Liang SX, Jia Z, Zhang WC, Li XF, Wang WM, Lin HC, Zhang LC. Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation: a comparative study. Appl Catal B. 2018;221:108. https://doi.org/10.1016/j.apcatb.2017.09.007.

    Article  CAS  Google Scholar 

  11. Zhang LC, Jia Z, Lyu FC, Liang SX, Lu J. A review of catalytic performance of metallic glasses in wastewater treatment: recent progress and prospects. Progress Mater Sci. 2019;105:100576. https://doi.org/10.1016/j.pmatsci.2019.100576.

    Article  CAS  Google Scholar 

  12. Zhang LB, Qiu LX, Zhu QY, Liang X, Huang JX, Yang MT, Zhang ZX, Ma J, Shen J. Insight into efficient degradation of 3,5-dichlorosalicylic acid by Fe–Si–B amorphous ribbon under neutral condition. Appl Catal B Environ. 2021;294:120258. https://doi.org/10.1016/j.apcatb.2021.120258.

    Article  CAS  Google Scholar 

  13. Zhang QY, Liang SX, Jia Z, Zhang WC, Wang WM, Zhang LC. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons. J Mater Sci Technol. 2021;61:159. https://doi.org/10.1016/j.jmst.2020.06.016.

    Article  CAS  Google Scholar 

  14. Liang SX, Zhang WC, Zhang LN, Wang WM, Zhang LC. Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: toward potential industrial applications. Sustain Mater Technol. 2019;22:00126. https://doi.org/10.1016/j.susmat.2019.e00126.

    Article  CAS  Google Scholar 

  15. Wang JQ, Liu YH, Chen MW, Louzguine-Luzgin DV, Inoue A, Perepezko JH. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Sci Rep. 2012;2:418. https://doi.org/10.1038/srep00418.

    Article  CAS  Google Scholar 

  16. Gu JL, Shao Y, Zhao SF, Lu SY, Yang GN, Chen SQ, Yao KF. Effects of Cu addition on the glass forming ability and corrosion resistance of Ti–Zr–Be–Ni alloys. J Alloys Compd. 2017;725:573. https://doi.org/10.1016/j.jallcom.2017.07.165.

    Article  CAS  Google Scholar 

  17. Zhang HY, Zhang ZY, Xu YF, Xia AL, Li WH, Wang FC, Chen SS, Siso G. Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates. Rare Met. 2022;41(1):246. https://doi.org/10.1007/s12598-021-01745-w.

    Article  CAS  Google Scholar 

  18. Baek E, Das NR, Cannistraci CV, Rim T, Bermudez GSC, Nych K, Cho H, Kim K, Baek CK, Makarov D, Tetzlaff R, Chua L, Baraban L, Cuniberti G. Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions. Nat Electron. 2020;3(7):398. https://doi.org/10.1038/s41928-020-0412-1.

    Article  CAS  Google Scholar 

  19. Liang SX, Salamon S, Zerebecki S, Zhang LC, Jia Z, Wende H, Reichenberger S, Barcikowski S. A laser-based synthesis route for magnetic metallic glass nanoparticles. Scripta Mater. 2021;203:114094. https://doi.org/10.1016/j.scriptamat.2021.114094.

    Article  CAS  Google Scholar 

  20. Chen SQ, Hui KZ, Dong LZ, Li Z, Zhang QH, Gu L, Zhao W, Lan S, Ke YB, Shao Y, Hahn H, Yao KF. Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Sci China Mater. 2019;63(3):453. https://doi.org/10.1007/s40843-019-1205-5.

    Article  CAS  Google Scholar 

  21. Cao ZH, Cai YP, Sun C, Ma YJ, Wei MZ, Li Q, Lu HM, Wang H, Zhang X, Meng XK. Tailoring strength and plasticity of Ag/Nb nanolaminates via intrinsic microstructure and extrinsic dimension. Int J Plast. 2019;113:145. https://doi.org/10.1016/j.ijplas.2018.09.012.

    Article  CAS  Google Scholar 

  22. Feng HD, Jiao WC, Ma GF, He CL. Efficient sulfate radicles catalytic oxidation process activated by the Fe73.5Cu1Nb3Si13.5B9 amorphous alloy for the decolorization of wastewater. Fresenius Environ Bull. 2020;29(9A):8109. https://doi.org/10.1038/nature04421.

    Article  CAS  Google Scholar 

  23. Liang SX, Wang XQ, Zhang WC, Liu YJ, Wang WM, Zhang LC. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl Mater Today. 2020;19:100543. https://doi.org/10.1016/j.apmt.2019.100543.

    Article  Google Scholar 

  24. Wang QQ, Chen MX, Lin PH, Cui ZQ, Chu CL, Shen BL. Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. J Mater Chem A. 2018;6(23):10686. https://doi.org/10.1039/c8ta01534a.

    Article  CAS  Google Scholar 

  25. Yang WM, Wang QQ, Li WY, Xue L, Liu HS, Zhou J, Mo JY, Shen BL. A novel thermal-tuning Fe-based amorphous alloy for automatically recycled methylene blue degradation. Mater Des. 2019;161:136. https://doi.org/10.1016/j.matdes.2018.11.031.

    Article  CAS  Google Scholar 

  26. Auta M, Hameed BH. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J. 2014;237:352. https://doi.org/10.1016/j.cej.2013.09.066.

    Article  CAS  Google Scholar 

  27. Guan XH, Du JS, Meng XG, Sun YK, Sun B, Hu QH. Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater. 2012;215:1. https://doi.org/10.1016/j.jhazmat.2012.02.069.

    Article  CAS  Google Scholar 

  28. Qi YF, Li J, Zhang YQ, Cao Q, Si YM, Wu ZR, Akram M, Xu X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway. Appl Catal B Environ. 2021;286:119910. https://doi.org/10.1016/j.apcatb.2021.119910.

    Article  CAS  Google Scholar 

  29. Huang Y, Sheng B, Wang ZH, Liu QZ, Yuan RX, Xiao DX, Liu JS. Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe(II)/peroxymonosulfate process: an often overlooked effect of chloride. Water Res. 2018;145:453. https://doi.org/10.1016/j.watres.2018.08.055.

    Article  CAS  Google Scholar 

  30. Li ZD, Liu DF, Huang WL, Wei XC, Huang WW. Biochar supported CuO composites used as an efficient peroxymonosulfate activator for highly saline organic wastewater treatment. Sci Total Environ. 2020;721:137764. https://doi.org/10.1016/j.scitotenv.2020.137764.

    Article  CAS  Google Scholar 

  31. Tang Y, Shao Y, Chen N, Liu X, Chen SQ, Yao KF. Insight into the high reactivity of commercial Fe–Si–B amorphous zero-valent iron in degrading azo dye solutions. RSC Adv. 2015;5(43):34032. https://doi.org/10.1039/c5ra02870a.

    Article  CAS  Google Scholar 

  32. Chen SQ, Li M, Ma XY, Zhou MJ, Wang D, Yan MY, Li Z, Yao KF. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere. 2021;264:128392. https://doi.org/10.1016/j.chemosphere.2020.128392.

    Article  CAS  Google Scholar 

  33. Xu HJ, Shao Y, Chen SQ, Yao KF. Stress-induced activation of the commercial Fe-based metallic glass ribbons for azo dye degradation. J Non-Cryst Solids. 2021;572:121117. https://doi.org/10.1016/j.jnoncrysol.2021.121117.

    Article  CAS  Google Scholar 

  34. Jones JW, Lue L, Ormerod AP, Tiddy GJT. The influence of sodium chloride on the self-association and chromonic mesophase formation of Edicol Sunset Yellow. Liq Cryst. 2010;37(6–7):711. https://doi.org/10.1080/02678292.2010.486174.

    Article  CAS  Google Scholar 

  35. Dong YC, Chen JL, Li CH, Zhu HX. Decoloration of three azo dyes in water by photocatalysis of Fe(III)-oxalate complexes/H2O2 in the presence of inorganic salts. Dyes Pigm. 2007;73(2):261. https://doi.org/10.1016/j.dyepig.2005.12.007.

    Article  CAS  Google Scholar 

  36. Chen SQ, Li M, Ji QM, Feng T, Lan S, Yao KF. Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment. J Mater Sci Technol. 2022;117:49. https://doi.org/10.1016/j.jmst.2021.11.044.

    Article  CAS  Google Scholar 

  37. Xie PC, Ma J, Liu W, Zou J, Yue SYC, Li X, Wiesner MR, Fang JY. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Res. 2015;69:223. https://doi.org/10.1016/j.watres.2014.11.029.

    Article  CAS  Google Scholar 

  38. Zhang LF, Zhang LH, Sun YL, Jiang B. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal: enhanced catalytic efficiency and suppressed metal leaching. J Colloid Interface Sci. 2021;596:445. https://doi.org/10.1016/j.jcis.2021.03.171.

    Article  CAS  Google Scholar 

  39. Yang Y, Banerjee G, Brudvig GW, Kim JH, Pignatello JJ. Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environ Sci Technol. 2018;52(10):5911. https://doi.org/10.1021/acs.est.8b00735.

    Article  CAS  Google Scholar 

  40. Fan JH, Qin HH, Jiang SM. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen. Chem Eng J. 2019;359:723. https://doi.org/10.1016/j.cej.2018.11.165.

    Article  CAS  Google Scholar 

  41. Yuan RX, Ramjaun SN, Wang ZH, Liu JS. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater. 2011;196:173. https://doi.org/10.1016/j.jhazmat.2011.09.007.

    Article  CAS  Google Scholar 

  42. Huang Y, Wang ZH, Liu QZ, Wang XX, Yuan ZJ, Liu JS. Effects of chloride on PMS-based pollutant degradation: a substantial discrepancy between dyes and their common decomposition intermediate (phthalic acid). Chemosphere. 2017;187:338. https://doi.org/10.1016/j.chemosphere.2017.08.120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2021YFB3802800), the National Natural Science Foundation of China (Nos. 52101195, 51871120 and 52271147), the Natural Science Foundation of Jiangsu Province (Nos. BK20190480 and BK20200019), the Fundamental Research Funds for the Central Universities (Nos. 30920021156 and 30920010004) and Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Peng or Shuang-Qin Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, MJ., Zhang, WT., Li, Z. et al. Fe-based metallic glass as heterogeneous Fenton-like catalyst for azo dyes degradation: effect of inorganic anions. Rare Met. 42, 3443–3454 (2023). https://doi.org/10.1007/s12598-023-02327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02327-8

Keywords

Navigation