Skip to main content

Advertisement

Log in

Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metallic glasses (MGs) are rising novae in the catalytic field, due to their unique amorphous structure, large residual stress, and high density of low coordination sites. However, there is still an absence of suitable MGs’ catalysts for advanced oxidation processes (AOPs) with peroxymonosulfate (PMS), the most efficient and promising wastewater remediation technology. Herein, the cobalt-based MG (Co-MG) with a nominal composition of Co67Fe4Mo1.5Si16.5B11 (at%) was utilized as an activator of PMS for azo dye degradation. The results demonstrated that the Co-MG/PMS system had an order of magnitude higher efficiency on Orange II (OII) degradation than the Fe-MG/PMS system. For fundamental study and field application, the effect of adding inorganic anions (Cl, HCO3, H2PO4, SO42−, NO3), environmental factors, and cycle experiments on the catalytic properties of Co-MG were investigated emphatically to evaluate overall degradation performance. It has demonstrated that the Co-MG with more stability, better corrosion resistance and durability contrasted to Fe-MGs. In addition, the excellent catalytic performance of Co-MG was analyzed based on the quenched experiment, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) analysis. The present results provide not only a new candidate but also shed light on exploring a new kind of AOPs system based on Co-MGs for wastewater treatment.

Graphical abstract

摘要

金属玻璃(MGs)由于其独特的无定形结构、较大的残余应力和高密度的低配位点,在催化领域成为冉冉升起的新星。然而,目前仍然缺乏合适的MGs 催化剂去应用于基于过氧单硫酸盐(PMS)的高级氧化过程(AOPs),AOPs也是目前最有效和最有前途的废水修复技术。因此,制备的Co67Fe4Mo1.5Si16.5B11(at%)钴基非晶(Co-MG),用作PMS的活化剂去降解偶氮染料。结果表明,Co-MG/PMS体系对金橙II(OII)的降解速率比Fe-MG/PMS体系高出一个数量级。为验证非晶合金实用性和降解机制,重点研究了无机阴离子(Cl-、HCO3-、H2PO4-、SO42-、NO3-)、环境因素和循环实验对Co-MG催化性能的影响,并评价整体降解性能。结果表明,与Fe-MG 相比,Co-MG具有良好的耐盐性能、更好的环境适应性和更高的耐久性。此外,基于淬灭实验、EPR和XPS测试分析了Co-MG的催化机理。本研究不仅为废水治理提供了一种新的催化剂,也为探索一种基于钴基非晶的新型AOPs体系提供了启示。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jia Z, Duan XG, Qin P, Zhang WC, Wang WM, Yang C, Sun HQ, Wang SB, Zhang LC. Disordered atomic packing structure of metallic glass: toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Adv Func Mater. 2017;27(38):1702258. https://doi.org/10.1002/adfm.201702258.

    Article  CAS  Google Scholar 

  2. Ying HQ, Liu SN, Wu ZD, Dong WX, Ge JC, Hahn H, Lan S. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 2022;41(6):2021. https://doi.org/10.1007/s12598-022-01973-8.

    Article  CAS  Google Scholar 

  3. Sheng HW, Luo KW, Alamgir FM, Bai JM, Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature. 2006;439(7075):419. https://doi.org/10.1038/nature04421.

    Article  CAS  Google Scholar 

  4. Lan S, Zhu L, Wu ZD, Gu L, Zhang QH, Kong HH, Liu JZ, Song RY, Liu SN, Sha WYG, Liu Q, Liu W, Wang PY, Liu CT, Ren Y, Wang XL. A medium-range structure motif linking amorphous and crystalline states. Nat Mater. 2021;20(10):1347. https://doi.org/10.1038/s41563-021-01011-5.

    Article  CAS  Google Scholar 

  5. Lan S, Ren Y, Wei XY, Wang B, Gilbert EP, Shibayama T, Watanabe S, Ohnuma M, Wang XL. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nat Commun. 2017;8:14679. https://doi.org/10.1038/ncomms14679.

    Article  CAS  Google Scholar 

  6. Han KM, Jiang H, Wang YM, Qiang JB. Zr-Ti-Al-Fe-Cu bulk metallic glasses for biomedical device application. Rare Met. 2021;40(5):1239. https://doi.org/10.1007/s12598-020-01644-6.

    Article  CAS  Google Scholar 

  7. Jia Z, Zhang WC, Wang WM, Habibi D, Zhang LC. Amorphous Fe78Si9B13 alloy: an efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV–vis light. Appl Catal B. 2016;192:46. https://doi.org/10.1016/j.apcatb.2016.03.048.

    Article  CAS  Google Scholar 

  8. Zhang SY, Gao YY, Zhang ZB, Gu T, Liang XB, Wang LZ. Research progress on functional properties of novel high-entropy metallic glasses. Chin J Rare Met. 2021;45(6):717. https://doi.org/10.13373/j.cnki.cjrm.XY20080032.

    Google Scholar 

  9. Jia Z, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl Catal B. 2017;204:537. https://doi.org/10.1016/j.apcatb.2016.12.001.

    Article  CAS  Google Scholar 

  10. Ying HQ, Liu SN, Wu ZD, Dong WX, Ge JC, Hahn H, Provenzano V, Wang XL, Lan S. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 2022;41(6):2021. https://doi.org/10.1007/s12598-022-01973-8.

    Article  CAS  Google Scholar 

  11. Zhang LB, Qiu LX, Zhu QY, Liang X, Huang JX, Yang MT, Zhang ZX, Ma J, Shen J. Insight into efficient degradation of 3,5-dichlorosalicylic acid by Fe-Si-B amorphous ribbon under neutral condition. Appl Catal B. 2021;294:120258. https://doi.org/10.1016/j.apcatb.2021.120258.

    Article  CAS  Google Scholar 

  12. Chen S, Yang GN, Luo ST, Yin SJ, Jia JL, Li Z, Gao SH, Shao Y, Yao KF. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. J Mater Chem A. 2017;5(27):14230. https://doi.org/10.1039/c7ta01206c.

    Article  CAS  Google Scholar 

  13. Liang SX, Zhang WC, Zhang L, Wang WM, Zhang LC. Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: toward potential industrial applications. Sustain Mater Technol. 2019;22:e00126. https://doi.org/10.1016/j.susmat.2019.e00126.

    Article  CAS  Google Scholar 

  14. Jiang JL, Jia Z, He Q, Wang Q, Yu FL, Zhang LC, Liang SX, Kruzic JJ, Lu J. Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment. J Alloy Compd. 2020;822:153574. https://doi.org/10.1016/j.jallcom.2019.153574.

    Article  CAS  Google Scholar 

  15. Xu H, Jiang N, Wang D, Wang LH, Song YF, Chen ZQ, Ma J, Zhang T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl Catal B. 2020;263:118350. https://doi.org/10.1016/j.apcatb.2019.118350.

    Article  CAS  Google Scholar 

  16. Lu H, Sui MH, Yuan BJ, Wang JY, Lv YN. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals. Chem Eng J. 2019;357:140. https://doi.org/10.1016/j.cej.2018.09.111.

    Article  CAS  Google Scholar 

  17. Ahn YY, Bae H, Kim HI, Kim SH, Kim JH, Lee SG, Lee J. Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance. Appl Catal B. 2019;241:561. https://doi.org/10.1016/j.apcatb.2018.09.056.

    Article  CAS  Google Scholar 

  18. Wei J, Han D, Bi JT, Gong JB. Fe-doped ilmenite CoTiO3 for antibiotic removal: electronic modulation and enhanced activation of peroxymonosulfate. Chem Eng J. 2021;423:130165. https://doi.org/10.1016/j.cej.2021.130165.

    Article  CAS  Google Scholar 

  19. Qin XD, Zhu ZW, Liu G, Fu HM, Zhang HW, Wang AM, Li H, Zhang HF. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass. Sci Rep. 2015;5:18226. https://doi.org/10.1038/srep18226.

    Article  CAS  Google Scholar 

  20. Zeng D, Dan ZH, Qin FX, Chang H. Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys. Mater Chem Phys. 2020;242:122307. https://doi.org/10.1016/j.matchemphys.2019.122307.

    Article  CAS  Google Scholar 

  21. Tang Y, Shao Y, Chen N, Liu X, Chen SQ, Yao KF. Insight into the high reactivity of commercial Fe–Si–B amorphous zero-valent iron in degrading azo dye solutions. RSC Adv. 2015;5(43):34032. https://doi.org/10.1039/c5ra02870a.

    Article  CAS  Google Scholar 

  22. Chen SQ, Chen N, Chen MT, Luo ST, Shao Y, Yao KF. Multi-phase nanocrystallization induced fast degradation of methyl orange by annealing Fe-based amorphous ribbons. Intermetallics. 2017;90:30. https://doi.org/10.1016/j.intermet.2017.06.009.

    Article  CAS  Google Scholar 

  23. Wang JC, Jia Z, Liang SX, Qin P, Zhang WC, Wang WM, Sercombe TB, Zhang LC. Fe73.5Si13.5B9Cu1Nb3 metallic glass: rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. Mater Des. 2018;140:73. https://doi.org/10.1016/j.matdes.2017.11.049.

    Article  CAS  Google Scholar 

  24. Liang SX, Zhang QY, Jia Z, Zhang WC, Wang WM, Zhang LC. Tailoring surface morphology of heterostructured iron-based Fenton catalyst for highly improved catalytic activity. J Colloid Interface Sci. 2021;581:860. https://doi.org/10.1016/j.jcis.2020.07.138.

    Article  CAS  Google Scholar 

  25. Zhang LF, Zhang LH, Sun YL, Jiang B. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal: enhanced catalytic efficiency and suppressed metal leaching. J Colloid Interface Sci. 2021;596:455.

    Article  CAS  Google Scholar 

  26. Tang MF, Lai LM, Ding DY, Liu TH, Kang WZ, Guo N, Song B, Guo SF. Rapid degradation of Direct Blue dye by Co-based amorphous alloy wire. J Non-Cryst Solids. 2022;576:121282. https://doi.org/10.1016/j.jnoncrysol.2021.121282.

    Article  CAS  Google Scholar 

  27. Yang J, Li P, Duan XG, Zeng DQ, Ma ZB, An SR, Dong LQ, Cen WL, He YL. Insights into the role of dual reaction sites for single Ni atom Fenton-like catalyst towards degradation of various organic contaminants. J Hazard Mater. 2022;430: 128463. https://doi.org/10.1016/j.jhazmat.2022.128463.

    Article  CAS  Google Scholar 

  28. Yuan R, Ramjaun SN, Wang ZH, Liu JS. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater. 2011;196:173. https://doi.org/10.1016/j.jhazmat.2011.09.007.

    Article  CAS  Google Scholar 

  29. Huang Y, Sheng B, Wang ZH, Liu QZ, Yuan RX, Xiao DX, Liu JS. Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe (II)/peroxymonosulfate process: an often overlooked effect of chloride. Water Res. 2018;145:453. https://doi.org/10.1016/j.watres.2018.08.055.

    Article  CAS  Google Scholar 

  30. Huang Y, Wang ZH, Liu QZ, Wang XX, Yuan ZJ, Liu JS. Effects of chloride on PMS-based pollutant degradation: a substantial discrepancy between dyes and their common decomposition intermediate (phthalic acid). Chemosphere. 2017;187:338. https://doi.org/10.1016/j.chemosphere.2017.08.120.

    Article  CAS  Google Scholar 

  31. Bennedsen LR, Muff J, Søgaard EG. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere. 2012;86(11):1092. https://doi.org/10.1016/j.chemosphere.2011.12.011.

    Article  CAS  Google Scholar 

  32. Zheng H, Bao JG, Huang Y, XiangFaheem LJ, Ren BG, Du JK, Nadagouda MN, Dionysiou DD. Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation. Appl Catal B. 2019;259:118056. https://doi.org/10.1016/j.apcatb.2019.118056.

    Article  CAS  Google Scholar 

  33. Yang S, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J Hazard Mater. 2010;179(1–3):552. https://doi.org/10.1016/j.jhazmat.2010.03.039.

    Article  CAS  Google Scholar 

  34. Li J, Wan YJ, Li YJ, Yao G, Lai B. Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Appl Catal B. 2019;256:117782. https://doi.org/10.1016/j.apcatb.2019.117782.

    Article  CAS  Google Scholar 

  35. Long X, Feng CP, Ding DH, Chen N, Yang SJ, Chen GY, Wang XM, Chen RZ. Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: the reactivity between radical-nonradical coupling way and bisphenol A. J Hazard Mater. 2021;418:126357. https://doi.org/10.1016/j.jhazmat.2021.126357.

    Article  CAS  Google Scholar 

  36. Wei B, Li XL, Sun HG, Song KK, Wang L. Comparative study on the corrosion and self-cleaning behavior of Fe-B-C and Fe-B-P amorphous alloys in methylene blue dye solution degradation. J Non-Cryst Solids. 2022;575:121212. https://doi.org/10.1016/j.jnoncrysol.2021.121212.

    Article  CAS  Google Scholar 

  37. Wang Q, Chen MX, Lin PH, Cui ZQ, Chu CL, Shen BL. Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. J Mater Chem A. 2018;6(23):10686. https://doi.org/10.1039/c8ta01534a.

    Article  CAS  Google Scholar 

  38. Gu JL, Shao Y, Zhao SF, Lu SY, Yang GN, Chen SQ, Yao KF. Effects of Cu addition on the glass forming ability and corrosion resistance of Ti-Zr-Be-Ni alloys. J Alloy Compd. 2017;725:573. https://doi.org/10.1016/j.jallcom.2017.07.165.

    Article  CAS  Google Scholar 

  39. Pratap A, Kasyap K, Prajapati S, Upadhyay D. Bio-corrosion studies of Fe-based metallic glasses. Mater Today: Proc. 2021;42:1669. https://doi.org/10.1016/j.matpr.2020.07.588.

    Article  CAS  Google Scholar 

  40. Zhou XC, Tang YL, Xu XF, Zhou XQ, Zhao GQ, Zhou MF, Wan GP, Wang GZ. CoP/C hollow hybrids inducing abundant active interfaces and fast electron transfers to activate peroxymonosulfates for bisphenol A degradation. Materials Today Nano. 2021;14:100116. https://doi.org/10.1016/j.mtnano.2021.100116.

    Article  CAS  Google Scholar 

  41. Fan J, Qin H, Jiang S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen. Chem Eng J. 2019;359:723. https://doi.org/10.1016/j.cej.2018.11.165.

    Article  CAS  Google Scholar 

  42. Yang Y, Banerjee B, Brudvig GW, Kim JH, Pignatello JJ. Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environ Sci Technol. 2018;52(10):5911. https://doi.org/10.1021/acs.est.8b00735.

    Article  CAS  Google Scholar 

  43. Nguyen TB, Huang CP, Doong RA, Wang MH, Chen CW, Dong CD. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem Eng J. 2022;436:135244. https://doi.org/10.1016/j.cej.2022.135244.

    Article  CAS  Google Scholar 

  44. Qi Y, Li J, Zhang YQ, Cao Y, Si YM, Wu ZR, Muhammad Akram, Xing Xu. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway. Appl Catal B. 2021;286:119910. https://doi.org/10.1016/j.apcatb.2021.119910.

    Article  CAS  Google Scholar 

  45. Zhu MP, Yang JCE, Sun DD, Yuan BL, Fu ML. Deciphering the simultaneous removal of carbamazepine and metronidazole by monolithic Co2AlO4@Al2O3 activated peroxymonosulfate. Chem Eng J. 2022;436:135201. https://doi.org/10.1016/j.cej.2022.135201.

    Article  CAS  Google Scholar 

  46. Fu S, Liu SN, Ge JC, Wang JJ, Ying HQ, Wu SS, Yan MY, Zhu L, Ke YB, Luan JH, Ren Y, Zuo XB, Wu ZD, Peng Z, Liu CT, Wang XL, Feng T, Lan S. In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass. J Mater Sci Technol. 2022;125:12. https://doi.org/10.1016/j.jmst.2022.01.038.

    Article  Google Scholar 

  47. Wang JC, Liang SX, Jia Z, Zhang WC, Wang WM, Liu YJ, Lu J, Zhang LC. Chemically dealloyed Fe-based metallic glass with void channels-like architecture for highly enhanced peroxymonosulfate activation in catalysis. J Alloy Compd. 2019;785:642. https://doi.org/10.1016/j.jallcom.2019.01.130.

    Article  CAS  Google Scholar 

  48. Jia Z, Jia Z, Wang Q, Sun LG, Wang Q, Zhang LC, Wu G, Luan JH, Jiao ZB, Wang A, Liang SX, Gu M, Lu J. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv Func Mater. 2019;29(19):1807857. https://doi.org/10.1002/adfm.201807857.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3802800), the National Natural Science Foundation of China (Nos. 52101195 and 51871120), the Natural Science Foundation of Jiangsu Province (Nos. BK20190480 and BK20200019), the National Key R&D Program of China (No. 2021YFB3802800) and the Fundamental Research Funds for the Central Universities (Nos. 30920021156 and 30920010004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang-Qin Chen, Si Lan or Tao Feng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6073 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XC., Chen, SQ., Zhou, MJ. et al. Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation. Rare Met. 42, 1160–1174 (2023). https://doi.org/10.1007/s12598-022-02220-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02220-w

Keywords

Navigation