Skip to main content
Log in

Highly electronegative PtAu alloy for simultaneous hydrogen generation and ethanol upgrading

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Simultaneous electrochemical synthesis of high-value-added chemicals and hydrogen is a promising technology for efficient carbon utilization and renewable energy storage. However, the lack of rational guidance for designing efficient catalysts for electrosynthesis significantly hinders its development. A new technology of simultaneous generation of hydrogen and upgrading of ethanol by using catalysts based on PtAu nanoparticles (NPs) was reported. At a current density of 10 mA·cm−2, the cell using PtAu nanoparticles had a low onset potential of 0.67 V, much lower than those of PtIr NPs (0.85 V) and commercial platinum on carbon catalyst (Pt/C) (0.92 V). PtAu NPs also possessed higher Faraday efficiencies of 79% for ethyl acetate production and 95% for hydrogen evolution than PtIr NPs and Pt/C. In addition, the cell based on PtAu NPs exhibited no obvious degradation of performance after a current-time stability test for 1000 s. Further study revealed that the introduction of highly electronegative Au into Pt-based nanomaterials could facilitate the activation of ethanol. This work can benefit the rational design of catalysts with enhanced selectivity of electrosynthesis.

Graphical abstract

摘要

摘要:同时电化学合成高附加值化学品和氢气是有效达成碳中和及可再生能源储存的一种有前景的技术。然 而,由于缺乏设计电合成催化剂的基本指导策略,严重阻碍了其发展。我们提出了一种基于PtAu 纳米颗粒催化 剂的同时产氢气和乙醇升级转化的新技术。在10 mA·cm−2 的电流密度下,使用PtAu 纳米颗粒的电解池具有 0.67 V 的起始电位,远低于PtIr 纳米颗粒(0.85 V)和商用Pt/C(0.92 V)。在3 种催化剂中,PtAu 纳米颗粒 还具有最高的法拉第效率,产乙酸乙酯法拉第效率为79%,析氢法拉第效率为95%。此外,基于PtAu 纳米颗 粒的电解池在1000 s 的计时电流法稳定性测试后没有表现出明显的性能衰退。进一步的研究表明,在基于Pt 的纳米材料中引入高电负性元素Au 可以促进乙醇的活化。这项工作有助于合理设计高电合成选择性的催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Liu Y, Chen N, Li W, Sun M, Wu T, Huang B, Yong X, Zhang Q, Gu L, Song H, Bauer R, Tse JS, Zhang S, Yang B, Lu S. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat. 2022;3(2):249. https://doi.org/10.1002/smm2.1067.

    Article  CAS  Google Scholar 

  2. Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev. 2014;43(18):6555. https://doi.org/10.1039/C3CS60468C.

    Article  CAS  Google Scholar 

  3. Lu T, Li T, Shi D, Sun J, Pang H, Xu L, Yang J, Tang Y. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021;2(4):591. https://doi.org/10.1002/smm2.1063.

    Article  CAS  Google Scholar 

  4. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc. 2015;137(13):4347. https://doi.org/10.1021/ja510442p.

    Article  CAS  Google Scholar 

  5. Wang F, Zhang W, Wan H, Li C, An W, Sheng X, Liang X, Wang X, Ren Y, Zheng X, Lv D, Qin Y. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett. 2022;33(5):2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  6. Yang N, Chen D, Cui P, Lu T, Liu H, Hu C, Xu L, Yang J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat. 2021;2(2):234. https://doi.org/10.1002/smm2.1032.

    Article  CAS  Google Scholar 

  7. Zeng M, Zhang TA, Lv GZ, Dou ZH, Liu Y, Zhang Y. Adsorption of Au(III) ions on xanthated crosslinked chitosan resin in hydrochloric acid medium. Rare Met. 2021;40(3):743. https://doi.org/10.1007/s12598-014-0279-2.

    Article  CAS  Google Scholar 

  8. Li M, Zhao Z, Xia Z, Luo M, Zhang Q, Qin Y, Tao L, Yin K, Chao Y, Gu L, Yang W, Yu Y, Lu G, Guo S. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew Chem Int Ed. 2021;60(15):8243. https://doi.org/10.1002/anie.202016199.

    Article  CAS  Google Scholar 

  9. Zang D, Gao XJ, Li L, Wei Y, Wang H. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022;15(10):8872. https://doi.org/10.1007/s12274-022-4698-3.

    Article  CAS  Google Scholar 

  10. Liu G, Zhou W, Ji Y, Chen B, Fu G, Yun Q, Chen S, Lin Y, Yin P, Cui X, Liu J, Meng F, Zhang Q, Song L, Gu L, Zhang H. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J Am Chem Soc. 2021;143(29):11262. https://doi.org/10.1021/jacs.1c05856.

    Article  CAS  Google Scholar 

  11. Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed. 2022;61(16):e202200899. https://doi.org/10.1002/anie.202200899.

    Article  CAS  Google Scholar 

  12. Li C, Chen X, Zhang L, Yan S, Sharma A, Zhao B, Kumbhar A, Zhou G, Fang J. Synthesis of core@shell Cu-Ni@Pt-Cu nano-octahedra and their improved MOR activity. Angew Chem Int Ed. 2021;60(14):7675. https://doi.org/10.1002/anie.202014144.

    Article  CAS  Google Scholar 

  13. Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S. Defect engineering for fuel-cell electrocatalysts. Adv Mater. 2020;32(19):1907879. https://doi.org/10.1002/adma.201907879.

    Article  CAS  Google Scholar 

  14. Mao J, Chen W, He D, Wan J, Pei J, Dong J, Wang Y, An P, Jin Z, Xing W, Tang H, Zhuang Z, Liang X, Huang Y, Zhou G, Wang L, Wang D, Li Y. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci Adv. 2017;3(8):e1603068. https://doi.org/10.1126/sciadv.1603068.

    Article  CAS  Google Scholar 

  15. Huang L, Zheng CY, Shen B, Mirkin CA. High-index-facet metal-alloy nanoparticles as fuel cell electrocatalysts. Adv Mater. 2020;32(30):2002849. https://doi.org/10.1002/adma.202002849.

    Article  CAS  Google Scholar 

  16. Liu K, Wang W, Guo P, Ye J, Wang Y, Li P, Lyu Z, Geng Y, Liu M, Xie S. Replicating the defect structures on ultrathin rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv Funct Mater. 2019;29(2):1806300. https://doi.org/10.1002/adfm.201806300.

    Article  CAS  Google Scholar 

  17. Serrano-Ruiz JC, Dumesic JA. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci. 2011;4(1):83. https://doi.org/10.1039/C0EE00436G.

    Article  CAS  Google Scholar 

  18. Li W, Jiang N, Hu B, Liu X, Song F, Han G, Jordan TJ, Hanson TB, Liu TL, Sun Y. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem. 2018;4(3):637. https://doi.org/10.1016/j.chempr.2017.12.019.

    Article  CAS  Google Scholar 

  19. You B, Liu X, Jiang N, Sun Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc. 2016;138(41):13639. https://doi.org/10.1021/jacs.6b07127.

    Article  CAS  Google Scholar 

  20. Zhu Y, Zhu X, Bu L, Shao Q, Li Y, Hu Z, Chen CT, Pao CW, Yang S, Huang X. Single-atom in-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv Funct Mater. 2020;30(49):2004310. https://doi.org/10.1002/adfm.202004310.

    Article  CAS  Google Scholar 

  21. Liu K, Wang W, Guo P, Ye J, Wang Y, Li P, Lyu Z, Geng Y, Liu M, Xie S. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv Funct Mater. 2019;29(2):1806300. https://doi.org/10.1002/adfm.201806300.

    Article  CAS  Google Scholar 

  22. Li JY, Li YH, Zhang F, Tang ZR, Xu YJ. Visible-lightdriven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B. 2020;269:118783. https://doi.org/10.1016/j.apcatb.2020.118783.

    Article  CAS  Google Scholar 

  23. Dai L, Qin Q, Zhao X, Xu C, Hu C, Mo S, Wang YO, Lin S, Tang Z, Zheng N. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Cent Sci. 2016;2(8):538. https://doi.org/10.1021/acscentsci.6b00164.

    Article  CAS  Google Scholar 

  24. Riza R, Cuenya BR. Shape-controlled nanoparticles as anodic catalysts in low-temperature fuel cells. ACS Energy Lett. 2019;4(6):1484. https://doi.org/10.1021/acsenergylett.9b00565.

    Article  CAS  Google Scholar 

  25. Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. A survival guide for the “electro-curious.” Acc Chem Res. 2020;53(1):72. https://doi.org/10.1021/acs.accounts.9b00539.

    Article  CAS  Google Scholar 

  26. Zhang BL, Deng LF, Liu B, Luo CY, Liebau M, Zhang SG, Glaser R. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met. 2022;41(1):166. https://doi.org/10.1007/s12598-021-01790-5.

    Article  CAS  Google Scholar 

  27. Miao RY, Li XX, Lei Q, Liu H, Ma ZH, Liu XD, Yin ZY, Tang ZB, Zhang L, Tian YH. Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3 and NO2 into N2 over CuPd nanowire network. Rare Met. 2022;41(3):851. https://doi.org/10.1007/s12598-021-01854-6.

    Article  CAS  Google Scholar 

  28. Wang Y, Wang D, Li Y. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat. 2021;2(1):56. https://doi.org/10.1002/smm2.1023.

    Article  CAS  Google Scholar 

  29. Bhunia K, Chandra M, Khilari S, Pradhan D. Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Appl Mater Interfaces. 2019;11(1):478. https://doi.org/10.1021/acsami.8b12183.

    Article  CAS  Google Scholar 

  30. Zheng JH, Zhang J, Li G, Zhang JM, Zhang BW, Jiang YX, Sun SG. Tuning atomic Pt site surface on PtAu alloy toward electro-oxidation of formic acid. Mater Today Energy. 2022;27:101028. https://doi.org/10.1016/j.mtener.2022.101028.

    Article  CAS  Google Scholar 

  31. Hu B, Bharate B, Jimenez JD, Lauterbach J, Naoto T, Wadayama T, Higashi K, Uruga T, Iwasawa Y, Ariga-Miwa H, Takakusagi S, Asakura K. Abnormal metal bond distances in PtAu alloy nanoparticles: in situ back-illumination XAFS investigations of the structure of PtAu nanoparticles on a flat HOPG substrate prepared by arc plasma deposition. J Phys Chem C. 2022;126(2):1006. https://doi.org/10.1021/acs.jpcc.1c08393.

    Article  CAS  Google Scholar 

  32. Liang L, Vladimir F, Ge J, Liu C, Xing W. Highly active PtAu alloy surface towards selective formic acid electrooxidation. J Energy Chem. 2019;37:157. https://doi.org/10.1016/j.jechem.2019.02.015.

    Article  Google Scholar 

  33. Inui K, Kurabayashi T, Sato S. Direct synthesis of ethyl acetate from ethanol carried out under pressure. J Catal. 2002;212:207. https://doi.org/10.1006/jcat.2002.3769.

    Article  CAS  Google Scholar 

  34. Sheng S, Ye K, Sha L, Zhu K, Gao Y, Yan J, Wang G, Cao D. Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen evolution reaction. Inorg Chem Front. 2020;7(22):4498. https://doi.org/10.1039/D0QI00289E.

    Article  CAS  Google Scholar 

  35. Bessudnov AE, Kustov LM, Mishin IV, Mikhailov MN. Phase composition of Mg-Al mixed oxides, their activity and selectivity in the ethanol condensation reaction. Russ Chem Bull. 2017;66(4):666. https://doi.org/10.1007/s11172-017-1789-5.

    Article  CAS  Google Scholar 

  36. Rizo R, Pérez-Rodríguez S, García G. Well-defined platinum surfaces for the ethanol oxidation reaction. ChemElectroChem. 2019;6(18):4725. https://doi.org/10.1002/celc.201900600.

    Article  CAS  Google Scholar 

  37. Cai Q, Hong W, Jian C, Li J, Liu W. high-performance silicon photoanode using nickel/iron as catalyst for efficient ethanol oxidation reaction. ACS Sustain Chem Eng. 2018;6(3):4231. https://doi.org/10.1021/acssuschemeng.7b04661.

    Article  CAS  Google Scholar 

  38. Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature. 1995;376:238. https://doi.org/10.1038/376238a0.

    Article  CAS  Google Scholar 

  39. Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc. 2010;132(35):12170. https://doi.org/10.1021/ja1036572.

    Article  CAS  Google Scholar 

  40. Chang F, Shan S, Petkov V, Skeete Z, Lu A, Ravid J, Wu J, Luo J, Yu G, Ren Y, Zhong CJ. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J Am Chem Soc. 2016;138(37):12166. https://doi.org/10.1021/jacs.6b05187.

    Article  CAS  Google Scholar 

  41. Kwon S, Ham DJ, Kim T, Kwon Y, Lee SG, Cho M. Active methanol oxidation reaction by enhanced CO tolerance on bimetallic Pt/Ir electrocatalysts using electronic and bifunctional effects. ACS Appl Mater Interfaces. 2018;10(46):39581. https://doi.org/10.1021/acsami.8b09053.

    Article  CAS  Google Scholar 

  42. Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev. 2018;118(5):2302. https://doi.org/10.1021/acs.chemrev.7b00488.

    Article  CAS  Google Scholar 

  43. Zheng Z, Ng YH, Wang DW, Amal R. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv Mater. 2016;28(45):9949. https://doi.org/10.1002/adma.201603662.

    Article  CAS  Google Scholar 

  44. Alazman A, Belic D, Alotaibi A, Kozhevnikova EF, Kozhevnikov IV. Isomerization of cyclohexane over bifunctional Pt-, Au-, and PtAu-heteropoly acid catalysts. ACS Catal. 2019;9(6):5063. https://doi.org/10.1021/acscatal.9b00592.

    Article  CAS  Google Scholar 

  45. Wang HF, Liu ZP. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J Am Chem Soc. 2008;130(33):10996. https://doi.org/10.1021/ja801648h.

    Article  CAS  Google Scholar 

  46. Luo L, Duan Z, Li H, Kim J, Henkelman G, Crooks RM. Tunability of the adsorbate binding on bimetallic alloy nanoparticles for the optimization of catalytic hydrogenation. J Am Chem Soc. 2017;139(15):5538. https://doi.org/10.1021/jacs.7b01653.

    Article  CAS  Google Scholar 

  47. Li M, Cullen DA, Sasaki K, Marinkovic NS, More K, Adzic R. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. J Am Chem Soc. 2013;135(1):132. https://doi.org/10.1021/ja306384x.

    Article  CAS  Google Scholar 

  48. Shang C, Liu ZP. Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution. J Am Chem Soc. 2011;133(25):9938. https://doi.org/10.1021/ja203468v.

    Article  CAS  Google Scholar 

  49. Zhang X, Ke X, Zhu H. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. Chem Eur J. 2012;18(26):8048. https://doi.org/10.1002/chem.201200368.

    Article  CAS  Google Scholar 

  50. Xie F, Zhang Y, He X, Li H, Qiu X, Zhou W, Huo S, Tang Z. First achieving highly selective oxidation of aliphatic alcohols to aldehydes over photocatalysts. J Mater Chem A. 2018;6(27):13236. https://doi.org/10.1039/C8TA03680B.

    Article  CAS  Google Scholar 

  51. Personick ML, Madix RJ, Friend CM. Selective oxygen-assisted reactions of alcohols and amines catalyzed by metallic gold: paradigms for the design of catalytic processes. ACS Catal. 2016;7(2):965. https://doi.org/10.1021/acscatal.6b02693.

    Article  CAS  Google Scholar 

  52. Zhu J, Figueiredo JL, Faria JL. Au/activated-carbon catalysts for selective oxidation of alcohols with molecular oxygen under atmospheric pressure: role of basicity. Catal Commun. 2008;9(14):2395. https://doi.org/10.1016/j.catcom.2008.05.041.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22105018, 22002003 and 22179009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Li, MG., Chao, YG. et al. Highly electronegative PtAu alloy for simultaneous hydrogen generation and ethanol upgrading. Rare Met. 42, 2949–2956 (2023). https://doi.org/10.1007/s12598-023-02289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02289-x

Navigation