Skip to main content
Log in

Lithiophilic montmorillonite as a robust substrate toward high-stable lithium metal anodes

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

锂金属被认为是下一代高能量密度可充电储能装置的理想负极。然而,由于不可控的枝晶生长导致的寿命短和安全问题阻碍了锂金属负极的商业化。在本文中,我们报道了一种亲锂性蒙脱土(MMT)作为坚固基底,以保持均匀的锂沉积,从而提高锂金属的电化学性能。这种层间MMT具有锂离子传输通道和足够的间隙,实现了快速的电化学动力学并缓解锂的体积膨胀。通过原位光学显微镜分析和COMSOL Multiphysics证明了稳定的锂沉积过程。在电流密度为2 mA·cm-2和1 mAh·cm-2的沉积容量下,半电池能够稳定循环700次,平均库伦效率达到99%,并且对称电池在1 mA·cm-2和1 mAh·cm-2的条件下稳定运行20000 min。这项工作提供了一种新的抑制枝晶生长的策略,以确保锂金属电池的高性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359. https://doi.org/10.1038/35104644.

    Article  CAS  Google Scholar 

  2. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sour. 2011;196(1):13. https://doi.org/10.1016/j.jpowsour.2010.07.020.

    Article  CAS  Google Scholar 

  3. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  Google Scholar 

  4. Wang YY, Zhao ZX, Zeng W, Liu XB, Wang L, Zhu J, Lu BA. Hierarchically porous Cu current collector with lithiophilic CuxO interphase towards high-performance lithium metal batteries. J Energy Chem. 2021;58:292. https://doi.org/10.1016/j.jechem.2020.10.005.

    Article  CAS  Google Scholar 

  5. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409. https://doi.org/10.1007/s12598-020-01501-6.

    Article  CAS  Google Scholar 

  6. Wang QY, Liu B, Shen YH, Wu JK, Zhao ZQ, Zhong C, Hu WB. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci. 2021;8(17):2101111. https://doi.org/10.1002/advs.202101111.

    Article  CAS  Google Scholar 

  7. Chen XR, Zhao BC, Yan C, Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv Mater. 2021;33(8):2004128. https://doi.org/10.1002/adma.202004128.

    Article  CAS  Google Scholar 

  8. Brandt K. Historical development of secondary lithium batteries. Solid State Ion. 1994;69(3–4):173. https://doi.org/10.1016/0167-2738(94)90408-1.

    Article  CAS  Google Scholar 

  9. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271. https://doi.org/10.1021/cr020731c.

    Article  CAS  Google Scholar 

  10. Wang L, Wang T, Peng LL, Wang YL, Zhang M, Zhou J, Chen MX, Cao JH, Fei HL, Duan XD, Zhu J, Duan XF. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl Sci Rev. 2022;9(3):050. https://doi.org/10.1093/nsr/nwab050.

    Article  CAS  Google Scholar 

  11. Jiang FN, Yang SJ, Cheng XB, Shi P, Ding JF, Chen X, Yuan H, Liu L, Huang JQ, Zhang Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. J Energy Chem. 2022;72:158. https://doi.org/10.1016/j.jechem.2022.05.005.

    Article  CAS  Google Scholar 

  12. Xu CX, Jiang JJ. Electrolytes speed up development of zinc batteries. Rare Met. 2021;40(4):749. https://doi.org/10.1007/s12598-020-01628-6.

    Article  CAS  Google Scholar 

  13. Wang SJ, Rafiz K, Liu JL, Jin Y, Lin JYS. Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries. Sustain Energy Fuels. 2020;4(5):2342. https://doi.org/10.1039/d0se00027b.

    Article  CAS  Google Scholar 

  14. Liu H, Zhang G, Zheng X, Chen F. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. Int J Extrem Manuf. 2020;2(4):042001. https://doi.org/10.1088/2631-7990/abba12.

    Article  CAS  Google Scholar 

  15. Pfleging W. Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing. Int J Extrem Manuf. 2021;3(1):012002. https://doi.org/10.1088/2631-7990/abca84.

    Article  CAS  Google Scholar 

  16. Wang Y, Guo Y, Zhong J, Wang M, Wang L, Li S, Chen S, Deng H, Liu Y, Wu Y, Zhu J, Lu B. In situ formation of lithiophilic Li22Sn5 alloy and high Li-ion conductive Li2S/Li2Se via metal chalcogenide SnSSe for dendrite-free Li metal anodes. J Energy Chem. 2022;73:339. https://doi.org/10.1016/j.jechem.2022.06.039.

    Article  CAS  Google Scholar 

  17. Ferrese A, Albertus P, Christensen J, Newman J. Lithium redistribution in lithium-metal batteries. J Electrochem Soc. 2012;159(10):A1615. https://doi.org/10.1149/2.027210jes.

    Article  CAS  Google Scholar 

  18. Cui JC, Zhan TG, Zhang KD, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171. https://doi.org/10.1016/j.cclet.2017.11.039.

    Article  CAS  Google Scholar 

  19. Zhong J, Wang T, Wang L, Peng LL, Fu SB, Zhang M, Cao JH, Xu X, Liang JF, Fei HL, Duan XD, Lu BA, Wang YL, Zhu J, Duan XF. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nanomicro Lett. 2022;14(1):50. https://doi.org/10.1007/s40820-022-00790-z.

    Article  CAS  Google Scholar 

  20. Zheng H, Xiang H, Jiang F, Liu Y, Sun Y, Liang X, Feng Y, Yu Y. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater. 2020;10(30):2001440. https://doi.org/10.1002/aenm.202001440.

    Article  CAS  Google Scholar 

  21. Liu S, Zhao Y, Li X, Yu J, Yan J, Ding B. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv Mater. 2021;33(12):2008084. https://doi.org/10.1002/adma.202008084.

    Article  CAS  Google Scholar 

  22. Li A, Liao X, Zhang H, Shi L, Wang P, Cheng Q, Borovilas J, Li Z, Huang W, Fu Z, Dontigny M, Zaghib K, Myers K, Chuan X, Chen X, Yang Y. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv Mater. 2019;32(2):1905517. https://doi.org/10.1002/adma.201905517.

    Article  CAS  Google Scholar 

  23. Pham TD, Bin Faheem A, Chun SY, Rho JR, Kwak K, Lee KK. Synergistic effects on lithium metal batteries by preferential ionic interactions in concentrated bisalt electrolytes. Adv Energy Mater. 2021;11(11):2003520. https://doi.org/10.1002/aenm.202003520.

    Article  CAS  Google Scholar 

  24. Sun XW, Zhang XY, Ma QT, Guan XZ, Wang W, Luo JY. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew Chem Int Ed. 2020;59(17):6665. https://doi.org/10.1002/anie.201912217.

    Article  CAS  Google Scholar 

  25. Yang M, Liu Y, Nolan AM, Mo Y. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries. Adv Mater. 2021;33(11):2008081. https://doi.org/10.1002/adma.202008081.

    Article  CAS  Google Scholar 

  26. Wang L, Zhou ZY, Yan X, Hou F, Wen L, Luo WB, Liang J, Dou SX. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Stor Mater. 2018;14:22. https://doi.org/10.1016/j.ensm.2018.02.014.

    Article  Google Scholar 

  27. Cheng Y, Ke X, Chen Y, Huang X, Shi Z, Guo Z. Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries. Nano Energy. 2019;63:103854. https://doi.org/10.1016/j.nanoen.2019.103854.

    Article  CAS  Google Scholar 

  28. Duan H, Zhang J, Chen X, Zhang XD, Li JY, Huang LB, Zhang X, Shi JL, Yin YX, Zhang Q, Guo YG, Jiang L, Wan LJ. Uniform nucleation of lithium in 3d current collectors via bromide intermediates for stable cycling lithium metal batteries. J Am Chem Soc. 2018;140(51):18051. https://doi.org/10.1021/jacs.8b10488.

    Article  CAS  Google Scholar 

  29. Zhang M, He YX, Xu HJ, Ma C, Liang JF, Wang YY, Zhu J. Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries. Rare Met. 2022;41(3):814. https://doi.org/10.1007/s12598-021-01863-5.

    Article  CAS  Google Scholar 

  30. Assegie AA, Chung CC, Tsai MC, Su WN, Chen CW, Hwang BJ. Multilayer-graphene-stabilized lithium deposition for anode-free lithium-metal batteries. Nanoscale. 2019;11(6):2710. https://doi.org/10.1039/c8nr06980h.

    Article  CAS  Google Scholar 

  31. Dai CL, Sun GQ, Hu LY, Xiao YK, Zhang ZP, Qu LT. Recent progress in graphene-based electrodes for flexible batteries. Infomat. 2020;2(3):509. https://doi.org/10.1002/inf2.12039.

    Article  CAS  Google Scholar 

  32. Li SY, Cao JH, Wang T, Wang L, Deng HL, Zhang QS, Cheng YL, Zhu J, Lu BA. Intercalation and covalent bonding strategies for constructing a stable cathode for high-energy density and long-cycling potassium-organic batteries. Chem Eng J. 2022;431:133215. https://doi.org/10.1016/j.cej.2021.133215.

    Article  CAS  Google Scholar 

  33. Qin PL, Zeng K, Lan ZQ, Huang XT, Liu HZ, Guo J. Enhanced dydrogen storage properties of Mg-Al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin J Rare Met. 2020;44(5):499. https://doi.org/10.13373/j.cnki.cjrm.xy18040037.

    Article  CAS  Google Scholar 

  34. Wang ZY, Lu ZX, Guo W, Luo Q, Yin YH, Liu XB, Li YS, Xia BY, Wu ZP. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv Mater. 2020;33(4):2006702. https://doi.org/10.1002/adma.202006702.

    Article  CAS  Google Scholar 

  35. Tabassum H, Mahmood A, Zhu BJ, Liang ZB, Zhong RQ, Guo SJ, Zou RQ. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ Sci. 2019;12(10):2924. https://doi.org/10.1039/c9ee00315k.

    Article  CAS  Google Scholar 

  36. Ma X, Liu Z, Chen H. Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy. 2019;59:500. https://doi.org/10.1016/j.nanoen.2019.02.048.

    Article  CAS  Google Scholar 

  37. Yang SN, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries. Chem Eng J. 2020;384:123294. https://doi.org/10.1016/j.cej.2019.123294.

    Article  CAS  Google Scholar 

  38. Zhang R, Chen XR, Chen X, Cheng XB, Zhang XQ, Yan C, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017;56(27):7764. https://doi.org/10.1002/anie.201702099.

    Article  CAS  Google Scholar 

  39. Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci U S A. 2016;113(11):2862. https://doi.org/10.1073/pnas.1518188113.

    Article  CAS  Google Scholar 

  40. Li W, Bi ZM, Zhang WX, Wang J, Rajagopalan R, Wang QJ, Zhang D, Li ZJ, Wang HY, Wang B. Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J Mater Chem A. 2021;9(13):8221. https://doi.org/10.1039/d0ta12129k.

    Article  CAS  Google Scholar 

  41. Ni SY, Tan SS, An QY, Mai LQ. Three dimensional porous frameworks for lithium dendrite suppression. J Energy Chem. 2020;44:73. https://doi.org/10.1016/j.jechem.2019.09.031.

    Article  Google Scholar 

  42. Song YX, Lu WY, Chen YJ, Yang H, Wu C, Wei WF, Chen LB, Ouyang XP. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 2022;41(4):1255. https://doi.org/10.1007/s12598-021-01811-3.

    Article  CAS  Google Scholar 

  43. Xu Y, Menon AS, Harks PPRML, Hermes DC, Haverkate LA, Unnikrishnan S, Mulder FM. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Stor Mater. 2018;12:69. https://doi.org/10.1016/j.ensm.2017.11.011.

    Article  Google Scholar 

  44. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv sci. 2017;4(3):1600445. https://doi.org/10.1002/advs.201600445.

    Article  CAS  Google Scholar 

  45. Li SY, He W, Liu B, Cui JQ, Wang XH, Peng DL, Liu B, Qu BH. One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Stor Mater. 2020;25:636. https://doi.org/10.1016/j.ensm.2019.09.021.

    Article  Google Scholar 

  46. Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016;28(15):2888. https://doi.org/10.1002/adma.201506124.

    Article  CAS  Google Scholar 

  47. Lang J, Song J, Qi L, Luo Y, Luo X, Wu H. Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode. ACS Appl Mater Interfaces. 2017;9(12):10360. https://doi.org/10.1021/acsami.7b00181.

    Article  CAS  Google Scholar 

  48. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater. 2001;13(10):3516.

    Article  CAS  Google Scholar 

  49. Bhattacharyya KG, Sen GS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci. 2008;140(2):114. https://doi.org/10.1016/j.cis.2007.12.008.

    Article  CAS  Google Scholar 

  50. Vaia RA, Liu WD, Koerner H. Analysis of small-angle scattering of suspensions of organically modified montmorillonite: implications to phase behavior of polymer nanocomposites. J Polym Sci Part B Polym Phys. 2003;41(24):3214. https://doi.org/10.1002/polb.10698.

    Article  CAS  Google Scholar 

  51. Nan Y, Li SM, Han C, Yan HB, Ma YX, Liu JH, Yang SB, Li B. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Adv Funct Mater. 2021;31(25):2102336. https://doi.org/10.1002/adfm.202102336.

    Article  CAS  Google Scholar 

  52. Yan HB, Li SM, Nan Y, Yang SB, Li B. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv Energy Mater. 2021;11(18):2100186. https://doi.org/10.1002/aenm.202100186.

    Article  CAS  Google Scholar 

  53. Chen W, Hu Y, Lv WQ, Lei TY, Wang XF, Li ZH, Zhang M, Huang JW, Du XC, Yan YC, He WD, Liu C, Liao M, Zhang WL, Xiong J, Yan CL. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat Commun. 2019;10:4973. https://doi.org/10.1038/s41467-019-12952-6.

    Article  CAS  Google Scholar 

  54. Jeon YM, Kim S, Lee M, Lee WB, Park JH. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv Energy Mater. 2020;10(47):2003114. https://doi.org/10.1002/aenm.202003114.

    Article  CAS  Google Scholar 

  55. Liu X, Kong TL, Qu J, Wang C, Lai C. Communication-trace montmorillonite electrolyte additive producing stable lithium-sulfur batteries. J Electrochem Soc. 2019;166(16):A3886. https://doi.org/10.1149/2.1301915jes.

    Article  CAS  Google Scholar 

  56. Yang M, Jue N, Chen Y, Wang Y. Improving cyclability of lithium metal anode via constructing atomic interlamellar ion channel for lithium sulfur battery. Nanoscale Res Lett. 2021;16(1):52. https://doi.org/10.1186/s11671-021-03508-z.

    Article  CAS  Google Scholar 

  57. Veiskarami M, Sarvi MN, Mokhtari AR. Influence of the purity of montmorillonite on its surface modification with an alkyl-ammonium salt. Appl Clay Sci. 2016;120:111. https://doi.org/10.1016/j.clay.2015.10.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52074113, 22005091 and 22005092), Hunan University Outstanding Youth Science Foundation (No. 531118040319), the Science and Technology Innovation Program of Hunan Province (No. 2021RC3055), the CITIC Metals Ningbo Energy Co. Ltd. (No. H202191380246), Chongqing Talents: Exceptional Young Talents Project (No. CQYC202105015), Shenzhen Virtual University Park Basic Research Project of Free exploration (No. 2021Szvup036), the Graduate Research and Innovation Projects of Hunan Province (No. QL20210088) and the Pennsylvania State University Start-Up Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Tao Sun, Ya-Ya Wang or Jian Zhu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2914 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, Y., Li, SY. et al. Lithiophilic montmorillonite as a robust substrate toward high-stable lithium metal anodes. Rare Met. 42, 2157–2165 (2023). https://doi.org/10.1007/s12598-022-02256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02256-y

Navigation