Skip to main content
Log in

Corrosion resistance of Cr2O3 coating formed by in-situ oxidation on 2205 duplex stainless steel in different pH solutions

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

以2205双相不锈钢为基体材料, 采用原位氧化的方法制备了厚度为734 nm的Cr2O3涂层, 研究了溶液PH值对2205双相不锈钢基体和涂层样品微观形貌和耐蚀性的影响, 其中设定腐蚀环境为3 wt.% NaCl, 0.1 mol KOH和0.5 mol H2SO4溶液。采用扫描电子显微镜, 掠入射X射线衍射仪和辉光放电光谱分别对待测样品的微观结构, 相组成和深度方向元素分布进行表征。结果表明涂层沉积致密且沿深度方向均匀分布, 涂层由Cr2O3和MnCr2O4尖晶石相组成。采用电化学方法对涂层样品和基体的耐蚀性进行评价, 结果表明2205双相不锈钢基体在碱性溶液中具有较好的耐蚀性, 而对于涂层样品在酸性溶液抗腐蚀性能较好。由于涂层的存在, 在不同PH值溶液中基体和涂层样品的腐蚀机理不同, 从而导致相同PH溶液下样品的抗腐蚀性能存在较大差异。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdo HS, Seikh AH, Abdus Samad U, Fouly A, Mohammed JA. Electrochemical corrosion behavior of laser welded 2205 duplex stainless-steel in artificial seawater environment under different acidity and alkalinity conditions. Crystals. 2021;11(9):1025. https://doi.org/10.3390/cryst11091025.

    Article  CAS  Google Scholar 

  2. Khan MS, Yang C, Pan H, Yang K, Zhao Y. The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS. Colloids Surf B. 2022;211: 112309. https://doi.org/10.1016/j.colsurfb.2021.112309.

    Article  CAS  Google Scholar 

  3. Liu C, Gong M, Zheng XW. Pitting corrosion of 2205 duplex stainless steel at high concentrations of NaCl solution. Int J Electrochem Sci. 2018;13(8):7432. https://doi.org/10.20964/2018.08.41.

    Article  CAS  Google Scholar 

  4. Chiu LH, Hsieh WC, Wu CH. Cooling rate effect on vacuum brazed joint properties for 2205 duplex stainless steels. Mater Sci Eng A. 2003;354(1–2):82. https://doi.org/10.1016/S0921-5093(02)00911-5.

    Article  CAS  Google Scholar 

  5. Ogawa T, Koseki T. Welding of duplex stainless steels for oil and gas industry applications. Weld Int. 1989;3(5):405. https://doi.org/10.1080/09507118909447673.

    Article  Google Scholar 

  6. Ha HY, Jang MH, Lee TH, Moon J. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel. Corros Sci. 2014;89(12):154. https://doi.org/10.1016/j.corsci.2014.08.021.

    Article  CAS  Google Scholar 

  7. Zhou Y, Engelberg DL. Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments. Electrochem Commun. 2020;117: 106779. https://doi.org/10.1016/j.elecom.2020.106779.

    Article  CAS  Google Scholar 

  8. Hwang H, Park Y. Effects of heat treatment on the phase ratio and corrosion resistance of duplex stainless steel. Mater Trans. 2009;50(6):1548. https://doi.org/10.2320/matertrans.MER2008168.

    Article  CAS  Google Scholar 

  9. Esteves L, Schvartzman MM, Costa Campos da WR, Lins VF. Corrosion behavior of duplex stainless steel in industrial white liquor. Corros J Sci Eng. 2018;74(5):543. https://doi.org/10.5006/2558.

    Article  CAS  Google Scholar 

  10. Yang Y, Yan B, Yin J, Wang Y, Dong G. Microstructure and corrosion behaviour aging at 750 °C in 25% Cr duplex stainless steel. Rare Met. 2011;30(1):515. https://doi.org/10.1007/s12598-011-0336-z.

    Article  CAS  Google Scholar 

  11. Abdo HS, Seikh AH, Mandal BB, Mohammed JA, Abdo MS. Microstructural characterization and corrosion-resistance behavior of dual-phase steels compared to conventional rebar. Crystals. 2020;10(11):1068. https://doi.org/10.3390/cryst10111068.

    Article  CAS  Google Scholar 

  12. Jiang H, Dong JX, Zhang MC, Zheng L, Yao ZH. Hot corrosion behavior and mechanism of FGH96 P/M superalloy in molten NaCl-Na2SO4 salts. Rare Met. 2019;38(2):173. https://doi.org/10.1007/s12598-016-0754-z.

    Article  CAS  Google Scholar 

  13. Li XY, Qu JK, Yin HY. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met. 2021;40(2):329. https://doi.org/10.1007/s12598-020-01537-8.

    Article  CAS  Google Scholar 

  14. Chen T. Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution. Corros Sci. 2000;42(3):545. https://doi.org/10.1016/S0010-938X(99)00105-5.

    Article  Google Scholar 

  15. Liu ZY, Dong CF, Li XG, Zhi Q, Cheng YF. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment. J Mater Sci. 2009;44(16):4228. https://doi.org/10.1007/s10853-009-3520-x.

    Article  CAS  Google Scholar 

  16. Singh B. Stress corrosion cracking of welded 2205 duplex stainless steel in sulfide-containing caustic solution. J Fail Anal Prev. 2007;7(5):371. https://doi.org/10.1007/s11668-007-9069-6.

    Article  Google Scholar 

  17. Shu QZ, Chang FC, Li QC. Corrosion characteristics of 2205 duplex stainless steel in high temperature and high pressure environment containing H2S/CO2. Appl Mech Mater. 2012;236–237:95. https://doi.org/10.4028/www.scientific.net/AMM.236-237.95.

    Article  CAS  Google Scholar 

  18. Herbsleb G, Poepperling RK. Corrosion properties of austenitic-ferritic duplex steel AF 22 in chloride and sulfide containing environments. Corrosion. 1980;36(11):611. https://doi.org/10.5006/0010-9312-36.11.611.

    Article  CAS  Google Scholar 

  19. Zhang YB, Yang XL, Tang A. Corrosion behavior of nickel-based 718 alloy determined by in situ electrochemical methods at different partial pressures of H2S in 25 wt% NaCl solution at 150 °C. Rare Met. 2019;38(9):855. https://doi.org/10.1007/s12598-019-01303-5.

    Article  CAS  Google Scholar 

  20. Soa A, Av B, Oja A, Bjb A, Aa C, Pao A. Residual stress impact on corrosion behaviour of hot and cold worked 2205 duplex stainless steel: a study by X-ray diffraction analysis. Eng Fail Anal. 2021;131: 105913. https://doi.org/10.1016/j.engfailanal.2021.105913.

    Article  CAS  Google Scholar 

  21. Simms N J, Sumner J. High temperature corrosion. Reference Module in Materials Science and Materials Engineering. 2022. https://doi.org/10.1016/B978-0-12-822944-6.00012-8

  22. Pu J, Li J, Hua B, Xie G. Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere. J Power Sources. 2006;158(1):354. https://doi.org/10.1016/j.jpowsour.2005.09.056.

    Article  CAS  Google Scholar 

  23. Wilson PR, Chen Z. The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip. Corros Sci. 2007;49(3):1305. https://doi.org/10.1016/j.corsci.2006.06.013.

    Article  CAS  Google Scholar 

  24. Peng X, Yan J, Zhou Y, Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater. 2005;53(19):5079. https://doi.org/10.1016/j.actamat.2005.07.019.

    Article  CAS  Google Scholar 

  25. Xiao Y, Tang J, Wang Y, Lin B, Nie Z, Li Y, Normand B, Wang H. Corrosion behavior of 2205 duplex stainless steel in NaCl solutions containing sulfide ions. Corros Sci. 2022;200:110240. https://doi.org/10.1016/j.corsci.2022.110240.

    Article  CAS  Google Scholar 

  26. Chen X, Xiao C, Wang X, Yang J, He C. Corrosion behaviors of 2205 duplex stainless steel in biotic and abiotic NaCl solutions. Constr Build Mater. 2022;342:127699. https://doi.org/10.1016/j.conbuildmat.2022.127699.

    Article  CAS  Google Scholar 

  27. Kocijan A, Merl DK, Jenko M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride. Corros Sci. 2011;53(2):776. https://doi.org/10.1016/j.corsci.2010.11.010.

    Article  CAS  Google Scholar 

  28. Zheng CB, Yi G. Investigating the influence of hydrogen on stress corrosion cracking of 2205 duplex stainless steel in sulfuric acid by electrochemical impedance spectroscopy. Corros Rev. 2017;35(1):23. https://doi.org/10.1515/corrrev-2016-0060.

    Article  CAS  Google Scholar 

  29. Xiang B, An WL, Fu JJ, Mei SX, Guo SG, Zhang XM, Gao B, Chu PK. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met. 2021;40(2):383. https://doi.org/10.1007/s12598-020-01528-9.

    Article  CAS  Google Scholar 

  30. Long R, Wang GL, Hu ZL, Sun PF, Zhang L. Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Met. 2021;40(6):1366. https://doi.org/10.1007/s12598-020-01502-5.

    Article  CAS  Google Scholar 

  31. Tang J, Zheng SB, Jiang SX, Li J, Guo T, Guo JH. Metal organic framework (ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone. Rare Met. 2021;40(2):478. https://doi.org/10.1007/s12598-020-01536-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation Capability Support Program of Shaanxi (No. 2019TD-038 and 2020KJXX-063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Cai, Qing-He Yu or Guang-Xu Cheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Wang, WJ., Zhao, N. et al. Corrosion resistance of Cr2O3 coating formed by in-situ oxidation on 2205 duplex stainless steel in different pH solutions. Rare Met. 42, 2189–2196 (2023). https://doi.org/10.1007/s12598-022-02248-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02248-y

Navigation