Skip to main content
Log in

Hydropathy modulation on Bi2S3 for enhanced electrocatalytic CO2 reduction

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Electrochemical CO2 reduction reaction (CO2RR) is a promising way to achieve carbon neutrality. However, the activity and selectivity of CO2RR are limited by not only the development of earth-abundant catalysts but also the CO2 mass transfer during the CO2RR process. Herein, Bi2S3 nanorods were synthesized under a relatively mild route. Furthermore, benefitting to the modulation of the hydropathy, the optimized sample (BS-P1) achieved a Faradaic efficiency of HCOO (> 90%) in the range from − 0.9 to − 1.2 V, a high current density of HCOO (2.29 times larger than that of BS-P0 at − 1.2 V) and a prolonged stability from 12 to 20 h at − 1.1 V. When the temperature decreased from 25 to 0 °C and eventually to − 20 °C, the reaction kinetics of CO2RR was slowed down, the distribution of products was changed and hydrogen evolution reaction (HER) was inhibited. This work provides a facile synthesis for Bi2S3 and highlights the importance of triple-phase interfaces in CO2RR.

Graphical abstract

摘要

电化学CO2还原反应(CO2RR)是一种很有前途的有望实现碳中和的方法。然而,CO2RR的活性和选择性不仅受限于催化剂在地球上的储量而且涉及到在CO2RR过程中CO2的传质的问题。本文中,我们在一个相对温和的合成路线下合成了Bi2S3纳米棒。此外,最佳样品(BS-P1)在-0.9 ~ − 1.2 V范围内的FEHCOO-均大于90%,在− 1.2 V条件下的JHCOO-最高,比BS-P0大2.29倍,在− 1.1 V时的稳定性从12 h延长到20 h。当温度从25降到0 °C,最后降到− 20 °C的过程中,CO2RR反应动力学减缓,产物分布改变,析氢反应(HER)受到抑制。这项工作为Bi2S3提供了一个简单的合成方法,并强调了CO2RR中三相界面的重要性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jiang ZL, Wang T, Pei JJ, Shang HS, Zhou DN, Li HJ, Dong JC, Wang Y, Cao R, Zhuang ZB, Chen WX, Wang DS, Zhang JT, Li YD. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ Sci. 2020;13:2856. https://doi.org/10.1039/D0EE01486A.

    Article  CAS  Google Scholar 

  2. Zhang JW, Sewell CD, Huang HW, Lin ZQ. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Adv Energy Mater. 2021;11(47):2102767. https://doi.org/10.1002/aenm.202102767.

    Article  CAS  Google Scholar 

  3. Wang YC, Liu Y, Liu W, Wu J, Li Q, Feng QG, Chen ZY, Xiong X, Wang DS, Lei YP. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ Sci. 2020;13:4609. https://doi.org/10.1039/D0EE02833A.

    Article  CAS  Google Scholar 

  4. Yang HZ, Shang L, Zhang QH, Shi R, Waterhouse GIN, Gu L, Zhang TR. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun. 2019;10:4585. https://doi.org/10.1038/s41467-019-12510-0.

    Article  CAS  Google Scholar 

  5. Li JJ, Zhang ZC. K+-enhanced electrocatalytic CO2 reduction to multicarbon products in strong acid. Rare Met. 2022;41(3):723. https://doi.org/10.1007/s12598-021-01862-6.

    Article  CAS  Google Scholar 

  6. Jia YF, Li F, Fan K, Sun LC. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv Powder Mater. 2022;1(1):100012. https://doi.org/10.1016/j.apmate.2021.10.003.

    Article  Google Scholar 

  7. Wang YC, Huang ZS, Lei YP, Wu J, Bai Y, Zhao X, Liu MJ, Zhan LS, Tang SH, Zhang XB, Luo FH, Xiong X. Bismuth with abundant defects for electrocatalytic CO2 reduction and Zn-CO2 batteries. Chem Commun. 2022;58:3621. https://doi.org/10.1039/D2CC00114D.

    Article  CAS  Google Scholar 

  8. Wu ZX, Wu HB, Cai WQ, Wen ZH, Jia BH, Wang L, Jin W, Ma TY. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew Chem Int Ed. 2021;60(22):12554. https://doi.org/10.1002/anie.202102832.

    Article  CAS  Google Scholar 

  9. Jing HY, Zhu P, Zheng XB, Zhang ZD, Wang DS, Li YD. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater. 2022;1(1):100013. https://doi.org/10.1016/j.apmate.2021.10.004.

    Article  Google Scholar 

  10. Liu M, Wang YR, Ding HM, Lu M, Gao GK, Dong LZ, Li Q, Chen YF, Li SL, Lan YQ. Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4. Sci Bull. 2021;66(16):1659. https://doi.org/10.1016/j.scib.2021.05.001.

    Article  CAS  Google Scholar 

  11. Wang YC, Wang QC, Wu J, Zhao X, Xiong Y, Luo FH, Lei YP. Asymmetric atomic sites make different: recent progress in electrocatalytic CO2 reduction. Nano Energy. 2022;103:107815. https://doi.org/10.1016/j.nanoen.2022.107815.

    Article  CAS  Google Scholar 

  12. Yin CY, Li Q, Zheng J, Ni YQ, Wu HQ, Kjøniksen AL, Liu CT, Lei YP, Zhang Y. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv Powder Mater. 2022;1(4):100055. https://doi.org/10.1016/j.apmate.2022.100055.

    Article  Google Scholar 

  13. Liu ST, Wang C, Wu JH, Tian BL, Sun YM, Lv Y, Mu ZY, Sun YX, Li XS, Wang FY, Wang YQ, Tang LY, Wang P, Li YF, Ding MN. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state. ACS Catal. 2021;11(20):12476. https://doi.org/10.1021/acscatal.1c02495.

    Article  CAS  Google Scholar 

  14. Liu BW, Xie Y, Wang XL, Gao C, Chen ZM, Wu J, Meng HY, Song ZC, Du SC, Ren ZY. Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction. Appl Catal B Environ. 2022;301:120781. https://doi.org/10.1016/j.apcatb.2021.120781.

    Article  CAS  Google Scholar 

  15. Chen D, Wang YL, Liu DY, Liu H, Qian C, He HY, Yang J. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy. 2020;2(3):443. https://doi.org/10.1002/cey2.38.

    Article  CAS  Google Scholar 

  16. Yuan YL, Wang QY, Qiao Y, Chen XL, Yang ZL, Lai WC, Chen TW, Zhang GH, Duan HG, Liu M, Huang HW. In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets. Adv Energy Mater. 2022;12(29):2200970. https://doi.org/10.1002/aenm.202200970.

    Article  CAS  Google Scholar 

  17. Li YZ, Chen JL, Chen S, Liao XL, Zhao TT, Cheng FY, Wang H. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett. 2022;7(4):1454. https://doi.org/10.1021/acsenergylett.2c00326.

    Article  CAS  Google Scholar 

  18. Liu SQ, Shahini E, Gao MR, Gong L, Sui PF, Tang T, Zeng HB, Luo JL. Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS Nano. 2021;15(11):17757. https://doi.org/10.1021/acsnano.1c05737.

    Article  CAS  Google Scholar 

  19. Wang YC, Xu L, Zhan LS, Yang PY, Tang SH, Liu MJ, Zhao X, Xiong Y, Chen ZY, Lei YP. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy. 2022;92:106780. https://doi.org/10.1016/j.nanoen.2021.106780.

    Article  CAS  Google Scholar 

  20. Deng PL, Wang HM, Qi RJ, Zhu JX, Chen SH, Yang F, Zhou L, Qi K, Liu HF, Xia BY. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020;10(1):743. https://doi.org/10.1021/acscatal.9b04043.

    Article  CAS  Google Scholar 

  21. Wei CH, Sg G, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Met. 2021;45(5):611. https://doi.org/10.13373/j.cnki.cjrm.XY20070021.

    Article  Google Scholar 

  22. Sui PF, Xu CY, Zhu MN, Liu SB, Liu QX, Luo JL. Interface-induced electrocatalytic enhancement of CO2-to-formate conversion on heterostructured bismuth-based catalysts. Small. 2022;18(1):2105682. https://doi.org/10.1002/smll.202105682.

    Article  CAS  Google Scholar 

  23. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  24. Li Q, Wang YC, Zeng J, Zhao X, Chen C, Wu QM, Chen LM, Chen ZY, Lei YP. Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met. 2021;40(12):3442. https://doi.org/10.1007/s12598-021-01772-7.

    Article  CAS  Google Scholar 

  25. Zhang Y, Li FW, Zhang XL, Williams T, Easton CD, Bond AM, Zhang J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J Mater Chem A. 2018;6:4714. https://doi.org/10.1039/C8TA00023A.

    Article  CAS  Google Scholar 

  26. Xu WW, Lu ZY, Sun XM, Jiang L, Duan X. Superwetting electrodes for gas-involving electrocatalysis. Acc Chem Res. 2018;51(7):1590. https://doi.org/10.1021/acs.accounts.8b00070.

    Article  CAS  Google Scholar 

  27. Zhong Y, Xu Y, Ma J, Wang C, Sheng SY, Cheng CT, Li MX, Han L, Zhou LL, Cai Z, Kuang Y, Liang Z, Sun XM. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew Chem Int Ed. 2020;59(43):19095. https://doi.org/10.1002/anie.202005522.

    Article  CAS  Google Scholar 

  28. Sheng XD, Ge WX, Jiang HL, Li CZ. Engineering Ni-N-C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv Mater. 2022. https://doi.org/10.1002/adma.202201295.

    Article  Google Scholar 

  29. Shi R, Guo JH, Zhang XR, Waterhouse GIN, Han ZJ, Zhao YX, Shang L, Zhou C, Jiang L, Zhang TR. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun. 2021;11:3028. https://doi.org/10.1038/s41467-020-16847-9.

    Article  CAS  Google Scholar 

  30. Cai Z, Zhang YS, Zhao YX, Wu YS, Xu WW, Wen XM, Zhong Y, Zhang Y, Liu W, Wang HL, Kuang Y, Sun XM. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019;12:345. https://doi.org/10.1007/s12274-018-2221-7.

    Article  CAS  Google Scholar 

  31. Lebedev YA, Korolev YM, Polikarpov VM, Ignat’eva LN, Antipov EM. X-ray powder diffraction study of polytetrafluoroethylene. Crystallogr Rep. 2010;55:609. https://doi.org/10.1134/S1063774510040127.

    Article  CAS  Google Scholar 

  32. Ding P, Zhang J, Han N, Zhou Y, Jia L, Li YG. Simultaneous power generation and CO2 valorization by aqueous Al-CO2 batteries using nanostructured Bi2S3 as the cathode electrocatalyst. J Mater Chem A. 2020;8:12385. https://doi.org/10.1039/D0TA03761C.

    Article  CAS  Google Scholar 

  33. Yang XX, Deng PL, Liu DY, Zhao S, Li D, Wu H, Ma YM, Xia BY, Li MT, Xiao CH, Ding SJ. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J Mater Chem A. 2020;8:2472. https://doi.org/10.1039/C9TA11363K.

    Article  CAS  Google Scholar 

  34. Wang YT, Li YH, Liu JZ, Dong CX, Xiao CQ, Cheng L, Jiang HL, Jiang H, Li CZ. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew Chem Int Ed. 2021;60(14):7681. https://doi.org/10.1002/anie.202014341.

    Article  CAS  Google Scholar 

  35. Li JF, Li ZY, Liu XM, Li CY, Zheng YF, Yeung KWK, Cui ZD, Liang YQ, Zhu SL, Hu WB, Qi YJ, Zhang TJ, Wang XB, Wu SL. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun. 2021;12:1224. https://doi.org/10.1038/s41467-021-21435-6.

    Article  CAS  Google Scholar 

  36. Wang Y, Liu M, Hao SQ, Li Y, Li QQ, Liu FY, Lai YQ, Li J, Wolverton C, Dravid VP, Jiang LX. Synergistic defect- and interfacial-engineering of a Bi2S3-based nanoplate network for high-performance photoelectrochemical solar water splitting. J Mater Chem A. 2022;10:7830. https://doi.org/10.1039/D1TA09961B.

    Article  CAS  Google Scholar 

  37. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5:118. https://doi.org/10.1038/nmat1571.

    Article  CAS  Google Scholar 

  38. Wu SW, Li YZ, Zhang Q, Hu QQ, Wu JC, Zhou CY, Zhao XJ. Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate, large light-to-fuel efficiency, and excellent durability for photothermocatalytic CO2 Reduction. Adv Energy Mater. 2020;10(42):2002602. https://doi.org/10.1002/aenm.202002602.

    Article  CAS  Google Scholar 

  39. Zeng ZP, Gan LY, Yang HB, Su XZ, Gao JJ, Liu W, Matsumoto H, Gong J, Zhang JM, Cai WZ, Zhang ZY, Yan YB, Liu B, Chen P. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun. 2022;12:4088. https://doi.org/10.1038/s41467-021-24052-5.

    Article  CAS  Google Scholar 

  40. Phu TT, Daiyan R, Fusco Z, Ma ZP, Amal R, Tricoli A. Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv Funct Mater. 2020;30(3):1906478. https://doi.org/10.1002/adfm.201906478.

    Article  CAS  Google Scholar 

  41. Wu D, Wang XW, Fu XZ, Luo JL. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl Catal B Environ. 2021;284:119723. https://doi.org/10.1016/j.apcatb.2020.119723.

    Article  CAS  Google Scholar 

  42. Pang RC, Tian PF, Jiang HL, Zhu MH, Su XZ, Wang Y, Yang XL, Zhu YH, Song L, Li CZ. Tracking structural evolution: operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Natl Sci Rev. 2021;8(7):nwaa187. https://doi.org/10.1093/nsr/nwaa187.

    Article  CAS  Google Scholar 

  43. Wang WB, Wang ZT, Yang RO, Duan JY, Liu YW, Nie AM, Li HQ, Xia BY, Zhai TY. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew Chem Int Ed. 2021;60(42):22940. https://doi.org/10.1002/anie.202110000.

    Article  CAS  Google Scholar 

  44. Li Q, Wang YC, Zeng J, Wu QM, Wang QC, Sun L, Xu L, Ye T, Zhao X, Chen L, Chen ZY, Chen LM, Lei YP. Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chin Chem Lett. 2021;32(11):3355. https://doi.org/10.1016/j.cclet.2021.03.063.

    Article  CAS  Google Scholar 

  45. Xing Z, Hu X, Feng XF. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 2021;6(5):1694. https://doi.org/10.1021/acsenergylett.1c00612.

    Article  CAS  Google Scholar 

  46. Lin J, Yan SL, Zhang CX, Hu Q, Cheng ZM. Hydrophobic electrode design for CO2 electroreduction in a microchannel reactor. ACS Appl Mater Interfaces. 2022;14(6):8623. https://doi.org/10.1021/acsami.1c23744.

    Article  CAS  Google Scholar 

  47. Wang ZY, Wang C, Hu YD, Yang S, Yang J, Chen WX, Zhou H, Zhou FY, Wang LX, Du JY, Li YF, Wu YE. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021;14:2790. https://doi.org/10.1007/s12274-021-3287-1.

    Article  CAS  Google Scholar 

  48. Zhang XY, Li WJ, Wu XF, Liu YW, Chen JC, Zhu MH, Yuan HY, Dai S, Wang HF, Jiang Z, Liu PF, Yang HG. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture. Energy Environ Sci. 2022;15:234. https://doi.org/10.1039/D1EE01493E.

    Article  Google Scholar 

  49. Mizuno T, Naitoh A, Ohta K. Electrochemical reduction of CO2 in methanol at −30 °C. J Electroanal Chem. 1995;391(1–2):199. https://doi.org/10.1016/0022-0728(95)03936-B.

    Article  Google Scholar 

  50. Chi LP, Niu ZZ, Zhang XL, Yang PP, Liao J, Gao FY, Wu ZZ, Tang KB, Gao MR. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat Commun. 2021;12:5835. https://doi.org/10.1038/s41467-021-26124-y.

    Article  CAS  Google Scholar 

  51. Xu QC, Zhang JH, Zhang HX, Zhang LY, Chen L, Hu YJ, Jiang H, Li CZ. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ Sci. 2021;14:5228. https://doi.org/10.1039/D1EE02105B.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2022ZZTS0579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Peng Lei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, LS., Wang, YC., Liu, MJ. et al. Hydropathy modulation on Bi2S3 for enhanced electrocatalytic CO2 reduction. Rare Met. 42, 806–812 (2023). https://doi.org/10.1007/s12598-022-02212-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02212-w

Navigation