Skip to main content
Log in

Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, silica-alumina mixed oxides with different SiO2 contents (5% and 30%) were adopted as acidic supports for platinum catalysts for soot oxidation. The obtained catalysts were hydrothermally aged in 10% H2O/air at 750 °C for 20 h. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption, inductively coupled plasma (ICP), CO chemisorption, NH3 temperature-programmed desorption (TPD), infrared (IR) spectroscopy of CO adsorption, temperature-programmed oxidation (TPO) of NO, and TPD of NOx. The surface acidity of catalyst was positive correlated with the content of SiO2, which kept platinum in metallic and partially oxidized states in an oxidizing atmosphere. Compared with sulfation treatment on the alumina support, the application of SiO2–Al2O3 mixed oxides does not result in the coverage of Pt active sites and the prepared catalysts exhibit excellent activity for NO oxidation. They promote NOx preferential adsorption on soot and decomposition of surface oxygenated compounds (SOCs) as the sulfated Pt/Al2O3 catalyst does.

Graphical abstract

摘要

采用不同二氧化硅质量含量(5% 和 30%)的硅铝复合氧化物作为铂基碳烟氧化催化剂的酸性载体,并将制得的催化剂在 750 °C含 10% 水蒸气的空气中水热老化 20 h。对催化剂进行了 X 射线衍射 (XRD)、氮气吸附、电感耦合等离子体 (ICP)、一氧化碳化学吸附、氨气程序升温脱附 (TPD)、一氧化碳吸附红外 (IR) 光谱、一氧化氮程序升温氧化 (TPO) 和 氮氧化物程序升温脱附 (TPD) 表征。结果发现催化剂的表面酸性与SiO2含量正相关,其促使铂在氧化气氛中保持金属态和部分氧化态。与磺化处理的氧化铝负载铂催化剂相比,采用硅铝复合氧化物载体不会导致铂活性位点被覆盖,所制备的催化剂表现出优异的一氧化氮氧化活性,并促进氮氧化物在碳烟表面的选择性吸附和碳烟表面含氧化合物 (SOCs) 的分解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi YK, Wang W, Liu YJ, Liu JJ, Wang L, Guo Y. Catalytic combustion performance of Co3O4 drived from metal-organic framework. Chin J Rare Met. 2021;45(8):952. https://doi.org/10.13373/j.cnki.cjrm.xy19050013.

    Article  CAS  Google Scholar 

  2. Zhang Y, Xu JW, Xu XL, Xi R, Liu YM, Fang XZ, Wang X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catal Today. 2020;355:518. https://doi.org/10.1016/j.cattod.2019.06.060.

    Article  CAS  Google Scholar 

  3. Siakavelas GI, Charisiou ND, AlKhoori A, Sebastian V, Hinder SJ, Baker MA, Yentekakis IV, Polychronopoulou K, Goula MA. Cerium oxide catalysts for oxidative coupling of methane reaction: effect of lithium, samarium and lanthanum dopants. J Environ Chem Eng. 2022;10(2):107259. https://doi.org/10.1016/j.jece.2022.107259.

    Article  CAS  Google Scholar 

  4. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pirone R. Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B-Environ. 2017;209:295. https://doi.org/10.1016/j.apcatb.2017.03.010.

    Article  CAS  Google Scholar 

  5. Zhang HL, Yuan SD, Wang JL, Gong MC, Chen YQ. Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J. 2017;327(1066):1066. https://doi.org/10.1016/j.cej.2017.06.013.

    Article  CAS  Google Scholar 

  6. Lee J, Jang EJ, Kwak JH. Effect of number and properties of specific sites on alumina surfaces for Pt-Al2O3 catalysts. Appl Catal A-Gen. 2019;569:8. https://doi.org/10.1016/j.apcata.2018.10.004.

    Article  CAS  Google Scholar 

  7. Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020;39(7):751. https://doi.org/10.1007/s12598-019-01205-6.

    Article  CAS  Google Scholar 

  8. Liu S, Wu XD, Weng D, Li M, Fan J. Sulfation of Pt/Al2O3 catalyst for soot oxidation: high utilization of NO2 and oxidation of surface oxygenated complexes. Appl Catal B-Environ. 2013;138–139:199. https://doi.org/10.1016/j.apcatb.2013.02.053.

    Article  CAS  Google Scholar 

  9. Wu XD, Zhou Z, Weng D, Wang B. Effects of tungsten oxide on the activity and thermal stability of a sulfate-derived titania supported platinum catalyst for propane oxidation. J Environ Sci-China. 2012;24(3):458. https://doi.org/10.1016/S1001-0742(11)60750-X.

    Article  CAS  Google Scholar 

  10. Gao YX, Yang WN, Wu XD, Liu S, Weng D, Ran R. Controllable synthesis of supported platinum catalysts: acidic support effect and soot oxidation catalysis. Catal Sci Technol. 2017;7(15):3268. https://doi.org/10.1039/c7cy01087g.

    Article  CAS  Google Scholar 

  11. Uchisawa JO, Obuchi A, Zhao Z, Kushiyama S. Carbon oxidation with platinum supported catalysts. Appl Catal B-Environ. 1998;18(3–4):L183. https://doi.org/10.1016/S0926-3373(98)00046-0.

    Article  Google Scholar 

  12. Liu S, Wu XD, Weng D, Li M, Rui R. Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot. ACS Catal. 2015;5(2):909. https://doi.org/10.1021/cs5018369.

    Article  CAS  Google Scholar 

  13. Yoshida H, Yazawa Y, Hattori T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion. Catal Today. 2003;87(1–4):19. https://doi.org/10.1016/j.cattod.2003.10.001.

    Article  CAS  Google Scholar 

  14. Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1. https://doi.org/10.1007/s12598-016-0760-1.

    Article  CAS  Google Scholar 

  15. Bhatia D, Mccabe RW, Harold MP, Balakotaiah V. Experimental and kinetic study of NO oxidation on model Pt catalysts. J Catal. 2009;266(1):106. https://doi.org/10.1016/j.jcat.2009.05.020.

    Article  CAS  Google Scholar 

  16. Huang J, van Vegten N, Jiang YJ, Hunger M, Baiker A. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew Chem –Int Edit. 2010;49(42):7776. https://doi.org/10.1002/anie.201003391.

    Article  CAS  Google Scholar 

  17. Cho SY, Kim JW, Bu SD. Effects of impurities on phase transition changes according to heat treatment of porous anodic alumina fabricated in oxalic acid and phosphoric acid electrolytes. J Korean Phys Soc. 2015;66(9):1394. https://doi.org/10.3938/jkps.66.1394.

    Article  CAS  Google Scholar 

  18. Chakarova K, Mihaylov M, Hadjiivanov K. FTIR spectroscopic study of CO adsorption on Pt–H–ZSM-5. Microporous Mesoporous Mat. 2005;81(1–3):305. https://doi.org/10.1016/j.micromeso.2005.01.033.

    Article  CAS  Google Scholar 

  19. Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T. The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials. Appl Catal A-Gen. 2002;233(1–2):103. https://doi.org/10.1016/S0926-860X(02)00130-8.

    Article  CAS  Google Scholar 

  20. Hao H, Jin BF, Liu W, Wu XD, Yin FF, Liu S. Robust Pt@TiOx/TiO2 catalysts for hydrocarbon combustion: effects of Pt-TiOx interaction and sulfates. ACS Catal. 2020;10(22):13543. https://doi.org/10.1021/acscatal.0c03984.

    Article  CAS  Google Scholar 

  21. Aranzabal A, González-Marcos JA, Romero-Sáez A, Gonzalez-Velasco JR, Guillemot M, Magnoux P. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Appl Catal B-Environ. 2009;88(3–4):533. https://doi.org/10.1016/j.apcatb.2008.10.007.

    Article  CAS  Google Scholar 

  22. Corma A, García H. Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem Rev. 2002;102(10):3837. https://doi.org/10.1021/cr010333u.

    Article  CAS  Google Scholar 

  23. Liu S, Wu XD, Luo H, Weng D, Ran R. Pt/Zeolite catalysts for soot oxidation: influence of hydrothermal aging. J Phys Chem C. 2015;119(30):17218. https://doi.org/10.1021/acs.jpcc.5b04882.

    Article  CAS  Google Scholar 

  24. Luo ST, Wu XD, Jin BF, Liu S, Ran R, Si ZC, Weng D. Size effect of Pt nanoparticles in acid-assisted soot oxidation in the presence of NO. J Environ Sci. 2020;94:64. https://doi.org/10.1016/j.jes.2020.04.008.

    Article  CAS  Google Scholar 

  25. Cao XQ, Zhou J, Li S, Qin JW. Ultra-stable metal nano-catalyst synthesis strategy: a perspective. Rare Met. 2020;39(2):113. https://doi.org/10.1007/s12598-019-01350-y.

    Article  CAS  Google Scholar 

  26. Gao YX, Wu XD, Nord R, Härelind H, Weng D. Sulphation and ammonia regeneration of a Pt/MnOx–CeO2/Al2O3 catalyst for NOx-assisted soot oxidation. Catal Sci Technol. 2018;8(6):1621. https://doi.org/10.1039/c8cy00027a.

    Article  CAS  Google Scholar 

  27. Müller JO, Frank B, Jentoft RE, Schlogl R, Su DS. The oxidation of soot particulate in the presence of NO2. Catal Today. 2012;191(1):106. https://doi.org/10.1016/j.cattod.2012.03.010.

    Article  CAS  Google Scholar 

  28. Ryszard MJF, Sieghard EW. The sintering of supported metal catalysts I. Redispersion of supported platinum in oxygen. J Catal. 1976;43(1–3):34. https://doi.org/10.1016/0021-9517(76)90290-6.

    Article  Google Scholar 

  29. Zheng TT, He JJ, Zhao YK, Xia WZ, He JL. Precious metal-support interaction in automotive exhaust catalysts. J Rare Earths. 2014;23(2):97. https://doi.org/10.1016/S1002-0721(14)60038-7.

    Article  CAS  Google Scholar 

  30. He J, Lin ZJ, Zhang L, Ding MT, Chen LF. Effects of silica on phase transformation of alumina gel fiber. J Funct Mat. 2013;44(7):926. https://doi.org/10.3969/j.issn.1001-9731.2013.07.004.

    Article  CAS  Google Scholar 

  31. Matarrese R, Castoldi L, Lietti L, Forzatti P. High performances of Pt-K/Al2O3 versus Pt-Ba/Al2O3 LNT catalysts in the simultaneous removal of NOx and soot. Top Catal. 2007;42–43(1–4):293. https://doi.org/10.1007/s11244-007-0194-y.

    Article  CAS  Google Scholar 

  32. Wang HL, Liu MH, Ma Y, Gong K, Liu W, Rang R, Weng D, Wu XD, Liu S. A simple strategy generating hydrothermally stable core-shell platinum catalysts with tunable distribution of acid sites. ACS Catal. 2018;8(4):2796. https://doi.org/10.1021/acscatal.7b04327.

    Article  CAS  Google Scholar 

  33. Mehring M, Elsener M, Bächli L, Krocher O. The influence of H2SO4 on soot oxidation with NO2. Carbon. 2012;50(6):2100. https://doi.org/10.1016/j.carbon.2011.12.061.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFC0211102), the National Natural Science Foundation of China (No. 21906091) and the Mobile Source Emission Control Technology (No. NELMS2020A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 979 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SR., Luo, ST., Wu, XD. et al. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation. Rare Met. 42, 1614–1623 (2023). https://doi.org/10.1007/s12598-022-02199-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02199-4

Keywords

Navigation