Skip to main content
Log in

Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nanograined (NG) materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries (GBs). Herein, we investigate the possibility of utilizing local chemical ordering (LCO) for improving the thermal stability of NG FeCoNiCrMn high-entropy alloys (HEAs). NG HEAs with two different grain sizes were considered. Tensile tests and creep test simulations were then performed to reveal the influence of LCO on the mechanical properties and thermal stability of NG HEAs. After performing hybrid molecular dynamics and Monte Carlo simulations, Cr atoms were found to accumulate at GBs. By analyzing the atomic structure evolution during the deformation process, we found that the formation of LCO effectively stabilized the GBs and inhibited GB movement. In addition, dislocation nucleation from GBs and dislocation movement was also hindered. The inhibiting effect of LCO on GB movement and dislocation activity is more prominent than in the NG model with smaller grain sizes. The current simulation results suggest a possible strategy for enhancing the thermal stability of NG HEAs for service in a high-temperature environment.

Graphical abstract

摘要

由于晶界体积分数高,纳米颗粒材料(NG)的热稳定性通常较低。在此,我们研究了利用 局部化学有序(LCO)改善NG-FeCoNiCrMn 高熵合金(HEA)热稳定性的可能性。考虑了 具有两种不同粒度的NG HEA。然后进行拉伸试验和蠕变试验模拟,以揭示LCO 对NG HEA 的机械性能和热稳定性的影响。在进行混合分子动力学和蒙特卡罗模拟后,发现铬原子在晶 界处累积。通过分析变形过程中的原子结构演化,我们发现LCO 的形成有效地稳定了晶界 并抑制了晶界的移动。此外,位错形核和位错运动也受到阻碍。与晶粒尺寸较小的NG 模型 相比,LCO 对晶界移动和位错活动的抑制作用更为显著。当前的模拟结果提出了一种可能 的策略,用于提高高温环境中使用的NG HEA 的热稳定性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887. https://doi.org/10.1016/j.actamat.2013.04.058.

    Article  CAS  Google Scholar 

  2. Zhou XY, Zhu JH, Wu Y, Yang XS, Lookman T, Wu HH. Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients. Acta Mater. 2022;224(2): 117535. https://doi.org/10.1016/j.actamat.2021.117535.

    Article  CAS  Google Scholar 

  3. Chen B, Li S, Zong H, Ding X, Sun J, Ma E. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys. Proc Natl Acad Sci. 2020;117(28):16199. https://doi.org/10.1073/pnas.1919136117.

    Article  CAS  Google Scholar 

  4. Oh HS, Ma D, Leyson GP, Grabowski B, Park ES, Körmann F, Raabe D. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy. 2016;18(9):321. https://doi.org/10.3390/e18090321.

    Article  CAS  Google Scholar 

  5. Cheng Z, Wang SZ, Wu GL, Gao JH, Yang XS, Wu HH. Tribological properties of high-entropy alloys: a review. Int J Miner Metall Mater. 2022;29(3):389. https://doi.org/10.1007/s12613-021-2373-4.

    Article  Google Scholar 

  6. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534(7606):227. https://doi.org/10.1038/nature17981.

    Article  CAS  Google Scholar 

  7. Xian X, Zhong ZH, Lin LJ, Zhu ZX, Chen C, Wu YC. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 2022;41(3):1015. https://doi.org/10.1007/s12598-018-1161-4.

    Article  CAS  Google Scholar 

  8. Lin YP, Yang TF, Lang L, Shan C, Deng HQ, Hu WY, Gao F. Enhanced radiation tolerance of the Ni–Co–Cr–Fe high-entropy alloy as revealed from primary damage. Acta Mater. 2020;196(9):133. https://doi.org/10.1016/j.actamat.2020.06.027.

    Article  CAS  Google Scholar 

  9. Luo H, Sohn SS, Lu WJ, Li LL, Li XG, Soundararajan CK, Krieger W, Li ZM, Raabe D. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat Commun. 2020;11(1):1. https://doi.org/10.1038/s41467-020-16791-8.

    Article  CAS  Google Scholar 

  10. Nygren KE, Wang S, Bertsch KM, Bei HB, Nagao A, Robertson IM. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy. Acta Mater. 2018;157(9):218. https://doi.org/10.1016/j.actamat.2018.07.032.

    Article  CAS  Google Scholar 

  11. Ren XL, Shi PH, Zhang WW, Wu XY, Xu Q, Wang YX. Swamps of hydrogen in equiatomic FeCuCrMnMo alloys: first-principles calculations. Acta Mater. 2019;180(11):189. https://doi.org/10.1016/j.actamat.2019.09.014.

    Article  CAS  Google Scholar 

  12. Zhao Y, Lee DH, Seok MY, Lee JA, Phaniraj MP, Suh JY, Ha HY, Kim JY, Ramamurty U, Jang JI. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Materialia. 2017;135(54):8. https://doi.org/10.1016/j.scriptamat.2017.03.029

  13. Luo H, Lu W, Fang X, Ponge D, Li Z, Raabe D. Beating hydrogen with its own weapon: nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Mater Today. 2018;21(10):1003. https://doi.org/10.1016/j.mattod.2018.07.015.

    Article  CAS  Google Scholar 

  14. Dong LS, Wang SZ, Wu GL, Gao JH, Zhou XY, Wu HH, Mao XP. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. Int J Hydrog Energy. 2022;47(46):20288. https://doi.org/10.1016/j.ijhydene.2022.04.119.

    Article  CAS  Google Scholar 

  15. Li HG, Che PC, Yang XK, Huang YJ, Ning ZL, Sun JF, Fan HB. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met. 2022;41(4):1210. https://doi.org/10.1007/s12598-021-01867-1.

    Article  CAS  Google Scholar 

  16. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153. https://doi.org/10.1126/science.1254581.

    Article  CAS  Google Scholar 

  17. Liu LY, Zhang Y, Han JH, Wang XY, Jiang WQ, Liu CT, Zhang ZW, Liaw PK. Nanoprecipitate-strengthened high-entropy alloys. Ad Sci. 2021;8(23):2100870. https://doi.org/10.1002/advs.202100870.

    Article  CAS  Google Scholar 

  18. Guo L, Ou XQ, Ni S, Liu Y, Song M. Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Mater Sci Eng A. 2019;746(2):356. https://doi.org/10.1016/j.msea.2019.01.050.

    Article  CAS  Google Scholar 

  19. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55(7):710. https://doi.org/10.1016/j.pmatsci.2010.04.001.

    Article  Google Scholar 

  20. Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377(7):38. https://doi.org/10.1016/j.msea.2003.10.261.

    Article  CAS  Google Scholar 

  21. Pan KM, Yang YP, Wei SZ, Wu HH, Dong ZL, Wu Y, Wang SZ, Zhang LQ, Lin JP, Mao XP. Oxidation behavior of Mo–Si–B alloys at medium-to-high temperatures. J Mater Sci Technol. 2021;60(10):113. https://doi.org/10.1016/j.jmst.2020.06.004.

    Article  CAS  Google Scholar 

  22. Wang ZQ, Wu HH, Wu Y, Huang HL, Zhu XY, Zhang YJ, Zhu HH, Yuan XY, Chen Q, Wang SD, Liu XJ, Wang H, Jiang SH, Kim MJ, Lu ZP. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today. 2022;54(4):83. https://doi.org/10.1016/j.mattod.2022.02.006.

    Article  CAS  Google Scholar 

  23. Li A, Shan DL, Lei CH, Xie SH, Pan K, Li JY, Liu YY. Mechanics of electrochemical strain microscopy: computational simulations and experimental validations. Int J Solids Struct. 2021;219–220(6):188. https://doi.org/10.1016/j.ijsolstr.2021.03.009.

    Article  CAS  Google Scholar 

  24. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B. 1951;64(9):747. https://doi.org/10.1088/0370-1301/64/9/303

  25. Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156. https://doi.org/10.1007/s12598-019-01320-4

  26. Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391(6667):561. https://doi.org/10.1038/35328.

    Article  Google Scholar 

  27. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary-mediated plasticity in nanocrystalline nickel. Science. 2004;305(5684):654. https://doi.org/10.1126/science.1098741.

    Article  CAS  Google Scholar 

  28. Lüthy H, White RA, Sherby OD. Grain boundary sliding and deformation mechanism maps. Mater Sci Eng. 1979;39(2):211. https://doi.org/10.1016/0025-5416(79)90060-0.

    Article  Google Scholar 

  29. Wang K, Wang XJ, Zhang TW, Jin X, Yang HJ, Qiao JW. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys. J Iron Steel Res Int. 2022;29(3):529. https://doi.org/10.1007/s42243-020-00520-y.

    Article  CAS  Google Scholar 

  30. Luo XM, Zhu XF, Zhang GP. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun. 2014;5(1):3021. https://doi.org/10.1038/ncomms4021.

    Article  CAS  Google Scholar 

  31. Hu J, Shi YN, Sauvage X, Sha G, Lu K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 2017;355(6331):1292. https://doi.org/10.1126/science.aal5166.

    Article  CAS  Google Scholar 

  32. Yang XS, Wang YJ, Wang GY, Zhai HR, Dai LH, Zhang TY. Time, stress, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations. Acta Mater. 2016;108(4):252. https://doi.org/10.1016/j.actamat.2016.02.021.

    Article  CAS  Google Scholar 

  33. Yang XS, Wang YJ, Zhai HR, Wang GY, Su YJ, Dai LH, Ogata S, Zhang TY. Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids. 2016;94(9):191. https://doi.org/10.1016/j.jmps.2016.04.021.

    Article  CAS  Google Scholar 

  34. Zhang RP, Chen YJ, Fang Y, Yu Q. Characterization of chemical local ordering and heterogeneity in high-entropy alloys. MRS Bull. 2022;47(3):186. https://doi.org/10.1557/s43577-022-00277-7.

    Article  CAS  Google Scholar 

  35. Wang SD, Liu XJ, Lei ZF, Lin DY, Bian FG, Yang CM, Jiao MY, Du Q, Wang H, Wu Y, Jiang SH, Lu ZP. Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys. Phys Rev B. 2021;103(10): 104107. https://doi.org/10.1103/PhysRevB.103.104107.

    Article  CAS  Google Scholar 

  36. Wu Y, Zhang F, Yuan XY, Huang HL, Wen XC, Wang YH, Zhang MY, Wu HH, Liu XJ, Wang H, Jiang SH, Lu ZP. Short-range ordering and its effects on mechanical properties of high-entropy alloys. J Mater Sci Technol. 2021;62(1):214. https://doi.org/10.1016/j.jmst.2020.06.018.

    Article  CAS  Google Scholar 

  37. Ding QQ, Zhang Y, Chen X, Fu XQ, Chen DK, Chen SJ, Gu L, Wei F, Bei HB, Gao YF, Wen M, Li JX, Zhang Z, Zhu T, Ritchie RO, Yu Q. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574(7777):223. https://doi.org/10.1038/s41586-019-1617-1.

    Article  CAS  Google Scholar 

  38. Qin MJ, Jin X, Zhang M, Yang HJ, Qiao JW. Twinning induced remarkable strain hardening in a novel Fe50Mn20Cr20Ni10 medium entropy alloy. J Iron Steel Res Int. 2021;28(11):1463. https://doi.org/10.1007/s42243-021-00585-3.

    Article  CAS  Google Scholar 

  39. Seol JB, Bae JW, Kim JG, Sung H, Li ZM, Lee HH, Shim SH, Jang JH, Ko WS, Hong SI, Kim HS. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater. 2020;194(8):366. https://doi.org/10.1016/j.actamat.2020.04.052.

    Article  CAS  Google Scholar 

  40. Li QJ, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun. 2019;10(1):3563. https://doi.org/10.1038/s41467-019-11464-7.

    Article  CAS  Google Scholar 

  41. Zhou XY, Yang XS, Zhu JH, Xing F. Atomistic simulation study of the grain-size effect on hydrogen embrittlement of nanograined Fe. Int J Hydrog Energy. 2020;45(4):3294. https://doi.org/10.1016/j.ijhydene.2019.11.131.

    Article  CAS  Google Scholar 

  42. Fang TH, Huang CC, Chiang TC. Effects of grain size and temperature on mechanical response of nanocrystalline copper. Mater Sci Eng A. 2016;671(8):1. https://doi.org/10.1016/j.msea.2016.06.042.

    Article  CAS  Google Scholar 

  43. Turlo V, Rupert TJ. Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation. Acta Mater. 2018;151(6):100. https://doi.org/10.1016/j.actamat.2018.03.055.

    Article  CAS  Google Scholar 

  44. Zhou XY, Zhu JH, Wu HH, Yang XS, Wang SZ, Mao XP. Unveiling the role of hydrogen on the creep behaviors of nanograined α-Fe via molecular dynamics simulations. Int J Hydrog Energy. 2021;46(14):9613. https://doi.org/10.1016/j.ijhydene.2020.12.115.

    Article  CAS  Google Scholar 

  45. Fantin A, Lepore GO, Manzoni AM, Kasatikov S, Scherb T, Huthwelker T, d’Acapito F, Schumacher G. Short-range chemical order and local lattice distortion in a compositionally complex alloy. Acta Mater. 2020;193(7):329. https://doi.org/10.1016/j.actamat.2020.04.034.

    Article  CAS  Google Scholar 

  46. Li J, Fang QH, Liu B, Liu Y. Transformation induced softening and plasticity in high entropy alloys. Acta Mater. 2018;147(4):35. https://doi.org/10.1016/j.actamat.2018.01.002.

    Article  CAS  Google Scholar 

  47. Utt D, Stukowski A, Albe K. Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 2020;186(3):11. https://doi.org/10.1016/j.actamat.2019.12.031.

    Article  CAS  Google Scholar 

  48. Alhafez AI, Ruestes CJ, Bringa EM, Urbassek HM. Nanoindentation into a high-entropy alloy—an atomistic study. J Alloy Compd. 2019;803(9):618. https://doi.org/10.1016/j.jallcom.2019.06.277.

    Article  CAS  Google Scholar 

  49. Qi YM, Xu HM, He TW, Feng ML. Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2021;814(3): 141196. https://doi.org/10.1016/j.msea.2021.141196.

    Article  CAS  Google Scholar 

  50. Zhou XY, Wu HH, Zhu JH, Li B, Wu Y. Plastic deformation mechanism in crystal-glass high entropy alloy composites studied via molecular dynamics simulations. Compos Commun. 2021;24(4): 100658. https://doi.org/10.1016/j.coco.2021.100658.

    Article  Google Scholar 

  51. Antillon E, Woodward C, Rao SI, Akdim B, Parthasarathy TA. Chemical short range order strengthening in a model FCC high entropy alloy. Acta Mater. 2020;190(3):29. https://doi.org/10.1016/j.actamat.2020.02.041.

    Article  CAS  Google Scholar 

  52. Chen S, Aitken ZH, Pattamatta S, Wu ZX, Yu ZG, Srolovitz DJ, Liaw PK, Zhang YW. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat Commun. 2021;12(1):4953. https://doi.org/10.1038/s41467-021-25264-5.

    Article  CAS  Google Scholar 

  53. Guo S, Chen H, Wang M. Research on the dislocation differences of CoCrFeMnNi with different local chemical orders during room temperature tensile test. J Alloy Compd. 2021;868(7): 159215. https://doi.org/10.1016/j.jallcom.2021.159215.

    Article  CAS  Google Scholar 

  54. Qi YM, Zhao M, Feng ML. Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression. J Alloy Compd. 2021;851(1):156923. https://doi.org/10.1016/j.jallcom.2020.156923.

    Article  CAS  Google Scholar 

  55. Zhao SJ. Effects of local elemental ordering on defect-grain boundary interactions in high-entropy alloys. J Alloy Compd. 2021;887(12):161314. https://doi.org/10.1016/j.jallcom.2021.161314.

    Article  CAS  Google Scholar 

  56. Brown AM, Ashby MF. On the power-law creep equation. Scr Metall. 1980;14(12):1297. https://doi.org/10.1016/0036-9748(80)90182-9.

    Article  CAS  Google Scholar 

  57. Choi WM, Jo YH, Sohn SS, Lee S, Lee BJ. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Comput Mater. 2018;4(1):1. https://doi.org/10.1038/s41524-017-0060-9

  58. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell Simul Mater Sci Eng. 2010;18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012.

    Article  Google Scholar 

  59. Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91(19):4950. https://doi.org/10.1021/j100303a014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52101019, 52071023, 51901013 and 52122408). H.-H. Wu also thanks to the financial support from the Fundamental Research Funds for the Central Universities (University of Science and Technology Beijing, Nos. FRF-TP-2021-04C1 and 06500135). The computing work is supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shui-Ze Wang or Xiao-Ye Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HH., Dong, LS., Wang, SZ. et al. Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Met. 42, 1645–1655 (2023). https://doi.org/10.1007/s12598-022-02194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02194-9

Keywords

Navigation