Skip to main content
Log in

Grain Growth in High-Entropy Alloys (HEAs): A Review

  • Review
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

Grain growth is an unavoidable phenomenon occurring during processing of multicomponent high-entropy alloys (HEAs) and medium-entropy alloys (MEAs), which significantly affects the properties and performance of these compositionally complex alloys during service. Accordingly, the present overview article is dedicated to summarize the state of the art of the grain coarsening behavior and its kinetics for HEAs and propose opportunities and scope for future research, with special attention to the Cantor-based compositions. Firstly, the primary recrystallization and grain growth of equiatomic and non-equiatomic CrMnFeCoNi alloys with face-centered cubic (FCC) crystal structure in the single-phase regime and with the presence of intermetallics such as the Cr-rich sigma (σ) phase is considered, which was accompanied by the powerful utilization of the solute drag effect, Zener pinning, and grain boundary segregation engineering via introducing carbon, nitrogen, boron, titanium, and niobium. Subsequently, the quaternary and ternary alloys based on Cr, Mn, Fe, Ni, and Co are taken into account. In these systems, the novel concept of grain boundary high-entropy effect (via the addition of molybdenum, niobium, and zirconium), the formation of pinning insoluble oxide and thermally stable carbide particles during mechanical alloying, the simultaneous solute drag and Zener pinning effects via Mo and C addition, and the formation of Cu-rich phase and the strong segregation effect of Cu atoms to grain boundaries in the FeCoNiCu HEA are critically discussed. Afterward, the thermal stability of AlxFeCoCrNi(Mn) HEAs is treated, where the formation of the Ni–Al-rich B2 phase and the corresponding Zener pinning effect, the influence of aluminum addition on the temperature range for the stability of the σ phase, and cluster drag mechanism of Al atoms are explained. What is more, the grain growth of refractory HEAs with body-centered cubic (BCC) crystal structure is also summarized, where the high grain growth activation energy is attributed to the presence of elements with very low self-diffusivity such as tantalum and niobium. Moreover, the possible effects of short-range ordering on the mobility of grain boundaries are discussed. Finally, the prospects for future research work are presented, including the development of precipitation-temperature-time (PTT) diagrams, systematic investigation of cold rolling and annealing for prior grain refinement, studying abnormal grain growth (secondary recrystallization), and assessment of grain growth behavior of HEAs manufactured by advanced methods such as additive manufacturing (3D printing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

Data availability

The authors stated that the processed data required to reproduce these findings were available in this manuscript.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004)

    Article  Google Scholar 

  3. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys. Prog. Mater Sci. 118, 100777 (2021)

    Article  CAS  Google Scholar 

  4. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater Sci. 102, 296–345 (2019)

    Article  CAS  Google Scholar 

  5. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  6. S. Praveen, H.S. Kim, High-entropy alloys: potential candidates for high-temperature applications–an overview. Adv. Eng. Mater. 20(1), 1700645 (2018)

    Article  Google Scholar 

  7. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019)

    Article  CAS  Google Scholar 

  8. R. Motallebi, Z. Savaedi, H. Mirzadeh, Superplasticity of high-entropy alloys: a review. Arch. Civil Mech. Eng. 22(1), 20 (2022)

    Article  Google Scholar 

  9. Z. Savaedi, R. Motallebi, H. Mirzadeh, A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J. Alloys Compd. 903, 163964 (2022)

    Article  CAS  Google Scholar 

  10. K. Ming, L. Li, Z. Li, X. Bi, J. Wang, Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys. Sci. Adv. 5(12), 0639 (2019)

    Article  Google Scholar 

  11. Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy. Mater. Sci. Eng. A 835, 142670 (2022)

    Article  CAS  Google Scholar 

  12. L.S. Mantha, B.E. MacDonald, X. Mu, A. Mazilkin, J. Ivanisenko, H. Hahn, E.J. Lavernia, S. Katnagallu, C. Kübel, Grain boundary segregation induced precipitation in a non equiatomic nanocrystalline CoCuFeMnNi compositionally complex alloy. Acta Mater. 220, 117281 (2021)

    Article  CAS  Google Scholar 

  13. H. Ma, Y. Shao, C.H. Shek, CoCuFeNi high entropy alloy reinforced by in-situ W particles. Mater. Sci. Eng. A 797, 140218 (2020)

    Article  CAS  Google Scholar 

  14. M. Harivandi, M. Malekan, S.A. Seyyed Ebrahimi, Soft magnetic high entropy FeCoNiCuMn alloy with excellent ductility and high electrical resistance. Met. Mater. Int. 28, 556–564 (2022)

    Article  CAS  Google Scholar 

  15. Z. Han, W. Ren, J. Yang, A. Tian, Y. Du, G. Liu, R. Wei, G. Zhang, Y. Chen, The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys. J. Alloys Compd. 816, 152583 (2020)

    Article  CAS  Google Scholar 

  16. D. Gaertner, J. Kottke, G. Wilde, S.V. Divinski, Y. Chumlyakov, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Mater. Res. 33(19), 3184–3191 (2018)

    Article  CAS  Google Scholar 

  17. S.V. Divinski, A.V. Pokoev, N. Esakkiraja, A. Paul, A mystery of" sluggish diffusion" in high-entropy alloys: the truth or a myth? Diffus. Found. 17, 69–104 (2018)

    Article  CAS  Google Scholar 

  18. A. Mehta, Y. Sohn, Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mater. Res. Lett. 9(5), 239–246 (2021)

    Article  CAS  Google Scholar 

  19. J. Zhang, C. Gadelmeier, S. Sen, R. Wang, X. Zhang, Y. Zhong, U. Glatzel, B. Grabowski, G. Wilde, S.V. Divinski, Zr diffusion in BCC refractory high entropy alloys: a case of ‘non-sluggish’ diffusion behavior. Acta Mater. 233, 117970 (2022)

    Article  CAS  Google Scholar 

  20. C. Zhang, M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, 2016), pp.72–92

    Google Scholar 

  21. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  22. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994–1001 (2016)

    Article  CAS  Google Scholar 

  23. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224 (2018)

    Article  CAS  Google Scholar 

  24. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783, 193–207 (2019)

    Article  Google Scholar 

  25. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 12293 (2017)

    Article  CAS  Google Scholar 

  26. B. Gwalani, R. Salloom, T. Alam, S.G. Valentin, X. Zhou, G. Thompson, S.G. Srinivasan, R. Banerjee, Composition-dependent apparent activation-energy and sluggish grain-growth in high entropy alloys. Mater. Res. Lett. 7(7), 267–274 (2019)

    Article  CAS  Google Scholar 

  27. E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020)

    Article  CAS  Google Scholar 

  28. M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, B.S. Murty, Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. J. Alloys Compd. 791, 1114–1121 (2019)

    Article  CAS  Google Scholar 

  29. B. Cantor, Multicomponent high-entropy Cantor alloys. Prog. Mater Sci. 120, 100754 (2021)

    Article  CAS  Google Scholar 

  30. Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, Mechanical properties of Cantor alloys driven by additional elements: a review. J. Market. Res. 15, 1920–1934 (2021)

    CAS  Google Scholar 

  31. Y.J. Li, A. Kostka, A. Savan, A. Ludwig, Correlative chemical and structural investigations of accelerated phase evolution in a nanocrystalline high entropy alloy. Scr. Mater. 183, 122–126 (2020)

    Article  CAS  Google Scholar 

  32. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015)

    Article  CAS  Google Scholar 

  33. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 705, 411–419 (2017)

    Article  CAS  Google Scholar 

  34. T.H. Chou, J.C. Huang, C.H. Yang, S.K. Lin, T.G. Nieh, Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys. Acta Mater. 195, 71–80 (2020)

    Article  CAS  Google Scholar 

  35. M.S. Mehranpour, H. Shahmir, M. Nili-ahmadabadi, CoCrFeNiMn high entropy alloy microstructure and mechanical properties after severe cold shape rolling and annealing. Mater. Sci. Eng. A 793, 139884 (2020)

    Article  CAS  Google Scholar 

  36. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)

    Article  CAS  Google Scholar 

  37. G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 161, 338–351 (2018)

    Article  CAS  Google Scholar 

  38. Y.J. Li, A. Savan, A. Kostka, H.S. Stein, A. Ludwig, Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater. Horiz. 5(1), 86–92 (2018)

    Article  CAS  Google Scholar 

  39. G. Liu, D.H. Lu, X.W. Liu, F.C. Liu, Q. Yang, H. Du, Q. Hu, Z.T. Fan, Solute segregation effect on grain boundary migration and Hall-Petch relationship in CrMnFeCoNi high-entropy alloy. Mater. Sci. Technol. 35(4), 500–508 (2019)

    CAS  Google Scholar 

  40. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122–127 (2017)

    Article  CAS  Google Scholar 

  41. J. Hu, X. Wang, J. Zhang, J. Luo, Z. Zhang, Z. Shen, A general mechanism of grain growth—I Theory. J. Materiomics 7(5), 1007–1013 (2021)

    Article  Google Scholar 

  42. M. Roostaei, M. Shirdel, M.H. Parsa, R. Mahmudi, H. Mirzadeh, Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Mater. Charact. 118, 584–592 (2016)

    Article  CAS  Google Scholar 

  43. B. Pourbahari, H. Mirzadeh, M. Emamy, Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. J. Mater. Res. 32(22), 4186–4195 (2017)

    Article  CAS  Google Scholar 

  44. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68(7), 526–529 (2013)

    Article  CAS  Google Scholar 

  45. F. Otto, N.L. Hanold, E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39–48 (2014)

    Article  CAS  Google Scholar 

  46. L. Li, R.D. Kamachali, Z. Li, Z. Zhang, Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy. Phys. Rev. Mater. 4(5), 053603 (2020)

    Article  CAS  Google Scholar 

  47. L. Li, Z. Li, A.K. da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Mater. 178, 1–9 (2019)

    Article  Google Scholar 

  48. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11–21 (2014)

    Article  CAS  Google Scholar 

  49. M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 88, 355–365 (2015)

    Article  CAS  Google Scholar 

  50. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys–towards rapid alloy screening and design. Mater. Sci. Eng. A 688, 180–189 (2017)

    Article  CAS  Google Scholar 

  51. J. Gu, S. Ni, Y. Liu, M. Song, Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Mater. Sci. Eng. A 755, 289–294 (2019)

    Article  CAS  Google Scholar 

  52. G.D. Sathiaraj, C.W. Tsai, J.W. Yeh, M. Jahazi, P.P. Bhattacharjee, The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy. J. Alloys Compd. 688, 752–761 (2016)

    Article  CAS  Google Scholar 

  53. Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Thermal mechanisms of grain refinement in steels: a review. Met. Mater. Int. 27(7), 2078–2094 (2021)

    Article  CAS  Google Scholar 

  54. M. Tavakoli, H. Mirzadeh, M. Zamani, Static recrystallization kinetics of ferrite in cold-deformed medium carbon steel. Mater. Res. Express 6(12), 1265g9 (2020)

    Article  Google Scholar 

  55. J. Gu, M. Song, Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scr. Mater. 162, 345–349 (2019)

    Article  CAS  Google Scholar 

  56. R. Besson, Ordering and phase separation in multi-principal-element metallic alloys: contribution from mean-field atomic-scale modelling and simulation. J. Alloys Compd. 898, 162842 (2022)

    Article  CAS  Google Scholar 

  57. M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, N.D. Stepanov, Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 748, 228–235 (2019)

    Article  CAS  Google Scholar 

  58. F. Najafkhani, S. Kheiri, B. Pourbahari, H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review. Arch. Civil Mech. Eng. 21(1), 29 (2021)

    Article  Google Scholar 

  59. F. Humphreys, J. Rohrer, A. Rollett, Recrystallization and related annealing phenomena, 3rd edn. (Elsevier, Oxford, 2017)

    Google Scholar 

  60. N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov, G.A. Salishchev, Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Mater. Lett. 185, 1–4 (2016)

    Article  CAS  Google Scholar 

  61. M.S. Mehranpour, H. Shahmir, M. Nili-ahmadabadi, Precipitation kinetics in heavily deformed CoCrFeNiMn high entropy alloy. Mater. Lett. 288, 129359 (2021)

    Article  CAS  Google Scholar 

  62. J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scr. Mater. 187, 335–339 (2020)

    Article  CAS  Google Scholar 

  63. D. Utt, A. Stukowski, K. Albe, Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 186, 11–19 (2020)

    Article  CAS  Google Scholar 

  64. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11–18 (2017)

    Article  CAS  Google Scholar 

  65. Y.H. Jo, W.M. Choi, D.G. Kim, A. Zargaran, K. Lee, H. Sung, S.S. Sohn, H.S. Kim, B.J. Lee, S. Lee, Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Mater. Sci. Eng. A 743, 665–674 (2019)

    Article  CAS  Google Scholar 

  66. X.W. Liu, L. Liu, G. Liu, X.X. Wu, D.H. Lu, J.Q. Yao, W.M. Jiang, Z.T. Fan, W.B. Zhang, The role of carbon in grain refinement of cast CrFeCoNi high-entropy alloys. Metall. Mater. Trans. A 49(6), 2151–2160 (2018)

    Article  CAS  Google Scholar 

  67. L. Guo, X. Ou, S. Ni, Y. Liu, M. Song, Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Mater. Sci. Eng. A 746, 356–362 (2019)

    Article  CAS  Google Scholar 

  68. J.Y. Ko, S.I. Hong, Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys. J. Alloys Compd. 743, 115–125 (2018)

    Article  CAS  Google Scholar 

  69. M.V. Klimova, D.G. Shaysultanov, R.S. Chernichenko, V.N. Sanin, N.D. Stepanov, S.V. Zherebtsov, A.N. Belyakov, Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy. Mater. Sci. Eng. A 740, 201–210 (2019)

    Article  Google Scholar 

  70. M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, N. Stepanov, Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys. J. Alloys Compd. 851, 156839 (2021)

    Article  CAS  Google Scholar 

  71. M. Glienke, M. Vaidya, K. Gururaj, L. Daum, B. Tas, L. Rogal, K.G. Pradeep, S.V. Divinski, G. Wilde, Grain boundary diffusion in CoCrFeMnNi high entropy alloy: kinetic hints towards a phase decomposition. Acta Mater. 195, 304–316 (2020)

    Article  CAS  Google Scholar 

  72. U. Lee, B. Straumal, N. Park, Dynamic precipitation of σ-phase and element partitioning in equiatomic CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 804, 140739 (2021)

    Article  CAS  Google Scholar 

  73. J. Zhang, G.M. Muralikrishna, A. Asabre, Y. Kalchev, J. Müller, B. Butz, S. Hilke, H. Rösner, G. Laplanche, S.V. Divinski, G. Wilde, Tracer diffusion in the σ phase of the CoCrFeMnNi system. Acta Mater. 203, 116498 (2021)

    Article  CAS  Google Scholar 

  74. Y. Xie, D. Zhou, Y. Luo, T. Xia, W. Zeng, C. Li, J. Wang, J. Liang, D. Zhang, Fabrication of CoCrFeNiMn high entropy alloy matrix composites by thermomechanical consolidation of a mechanically milled powder. Mater. Charact. 148, 307–316 (2019)

    Article  CAS  Google Scholar 

  75. S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591–604 (2017)

    Article  CAS  Google Scholar 

  76. J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, H.S. Kim, Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett. 8(1), 1–7 (2020)

    Article  CAS  Google Scholar 

  77. R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics 94, 165–171 (2018)

    Article  CAS  Google Scholar 

  78. R. Zhou, Y. Liu, B. Liu, J. Li, Q. Fang, Precipitation behavior of selective laser melted FeCoCrNiC0. 05 high entropy alloy. Intermetallics 106, 20–25 (2019)

    Article  CAS  Google Scholar 

  79. J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.H. Yu, S. Yang, H.S. Kim, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy. Mater. Sci. Eng. A 773, 138726 (2020)

    Article  CAS  Google Scholar 

  80. N. Choi, V. Kulitckii, J. Kottke, B. Tas, J. Choe, J.H. Yu, S. Yang, J.H. Park, J.S. Lee, G. Wilde, S.V. Divinski, Analyzing the ‘non-equilibrium state’ of grain boundaries in additively manufactured high-entropy CoCrFeMnNi alloy using tracer diffusion measurements. J. Alloys Compd. 844, 155757 (2020)

    Article  CAS  Google Scholar 

  81. D.E. Jodi, J. Park, B. Straumal, N. Park, Investigation on the precipitate formation and behavior in nitrogen-containing equiatomic CoCrFeMnNi high-entropy alloy. Mater. Lett. 258, 126806 (2020)

    Article  CAS  Google Scholar 

  82. F. Xiong, R. Fu, Y. Li, B. Xu, X. Qi, Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing. Mater. Sci. Eng. A 787, 139472 (2020)

    Article  CAS  Google Scholar 

  83. A. Semenyuk, M. Klimova, D. Shaysultanov, G. Salishchev, S. Zherebtsov, N. Stepanov, Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing. J. Alloys Compd. 888, 161452 (2021)

    Article  CAS  Google Scholar 

  84. S.H. Shim, J. Moon, H. Pouraliakbar, B.J. Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures. J. Alloys Compd. 897, 163217 (2022)

    Article  CAS  Google Scholar 

  85. F. Xiong, R.D. Fu, Y.J. Li, D.L. Sang, Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys. J. Alloys Compd. 822, 153512 (2020)

    Article  CAS  Google Scholar 

  86. I. Moravcik, J. Cizek, L.D.A. Gouvea, J. Cupera, I. Guban, I. Dlouhy, Nitrogen interstitial alloying of CoCrFeMnNi high entropy alloy through reactive powder milling. Entropy 21(4), 363 (2019)

    Article  CAS  Google Scholar 

  87. D. Zhao, Q. Yang, D. Wang, M. Yan, P. Wang, M. Jiang, C. Liu, D. Diao, C. Lao, Z. Chen, Z. Liu, Ordered nitrogen complexes overcoming strength–ductility trade-off in an additively manufactured high-entropy alloy. Virtual and Physical Prototyping 15(sup1), 532–542 (2020)

    Article  Google Scholar 

  88. M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 18, 100498 (2020)

    Article  Google Scholar 

  89. S. Thapliyal, P. Agrawal, P. Agrawal, S.S. Nene, R.S. Mishra, B.A. McWilliams, K.C. Cho, Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing. Acta Mater. 219, 117271 (2021)

    Article  CAS  Google Scholar 

  90. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332–342 (2016)

    Article  CAS  Google Scholar 

  91. Y. Shi, Y.D. Wang, S. Li, R. Li, Y. Wang, Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction. Mater. Sci. Eng. A 788, 139600 (2020)

    Article  CAS  Google Scholar 

  92. J.B. Seol, J.W. Bae, Z. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 151, 366–376 (2018)

    Article  CAS  Google Scholar 

  93. D.W. Kim, J. Yoo, S.S. Sohn, S. Lee, Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel. Mater. Sci. Eng. A 802, 140619 (2021)

    Article  CAS  Google Scholar 

  94. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18(4), 253–261 (2014)

    Article  CAS  Google Scholar 

  95. J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z. Li, H.H. Lee, S.H. Shim, J.H. Jang, W.S. Ko, S.I. Hong, H.S. Kim, Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater. 194, 366–377 (2020)

    Article  CAS  Google Scholar 

  96. T. Osanai, N. Sekido, M. Yonemura, K. Maruyama, M. Takeuchi, K. Yoshimi, Evolution of boron segregation during tempering in B doped 9% Cr ferritic steel. Mater. Charact. 177, 111192 (2021)

    Article  CAS  Google Scholar 

  97. G. Miyamoto, A. Goto, N. Takayama, T. Furuhara, Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel-effects of boundary misorientation and quenching temperature. Scr. Mater. 154, 168–171 (2018)

    Article  CAS  Google Scholar 

  98. H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, T.G. Langdon, Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 718, 468–476 (2018)

    Article  CAS  Google Scholar 

  99. H. Shahmir, M. Nili-Ahmadabadi, A. Shafie, T.G. Langdon, Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0 1 high-entropy alloy processed by high-pressure torsion. IOP Conf. Ser. 194, 012017 (2017)

    Article  Google Scholar 

  100. Y. Xie, Y. Luo, T. Xia, W. Zeng, J. Wang, J. Liang, D. Zhou, D. Zhang, Grain growth and strengthening mechanisms of ultrafine-grained CoCrFeNiMn high entropy alloy matrix nanocomposites fabricated by powder metallurgy. J. Alloys Compd. 819, 152937 (2020)

    Article  CAS  Google Scholar 

  101. A. Fu, W. Guo, B. Liu, Y. Cao, L. Xu, Q. Fang, H. Yang, Y. Liu, A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties. J. Alloys Compd. 815, 152466 (2020)

    Article  CAS  Google Scholar 

  102. Y. Xie, Z. Zhang, Y. Luo, J. Wang, J. Liang, D. Zhang, Plastic deformation behavior of ultrafine grained CoCrFeNiMn high entropy alloy with nanoparticles. Intermetallics 142, 107459 (2022)

    Article  CAS  Google Scholar 

  103. N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, E.P. George, Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. J. Alloys Compd. 792, 1028–1035 (2019)

    Article  CAS  Google Scholar 

  104. M. Li, Y. Guo, W. Li, Y. Zhang, Y. Chang, Property enhancement of CoCrNi medium-entropy alloy by introducing nano-scale features. Mater. Sci. Eng. A 817, 141368 (2021)

    Article  CAS  Google Scholar 

  105. Y. Guo, M. Li, P. Li, C. Chen, Q. Zhan, Y. Chang, Y. Zhang, Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys. J. Alloys Compd. 820, 153104 (2020)

    Article  CAS  Google Scholar 

  106. P. Asghari-Rad, N.T.C. Nguyen, Y. Kim, A. Zargaran, P. Sathiyamoorthi, H.S. Kim, TiC-reinforced CoCrFeMnNi composite processed by cold-consolidation and subsequent annealing. Mater. Lett. 303, 130503 (2021)

    Article  CAS  Google Scholar 

  107. K.A. Christofidou, T.P. McAuliffe, P.M. Mignanelli, H.J. Stone, N.G. Jones, On the prediction and the formation of the sigma phase in CrMnCoFeNix high entropy alloys. J. Alloys Compd. 770, 285–293 (2019)

    Article  CAS  Google Scholar 

  108. K. Cho, Y. Fujioka, T. Nagase, H.Y. Yasuda, Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase. Mater. Sci. Eng., A 735, 191–200 (2018)

    Article  CAS  Google Scholar 

  109. C. Wagner, A. Ferrari, J. Schreuer, J.P. Couzinié, Y. Ikeda, F. Körmann, G. Eggeler, E.P. George, G. Laplanche, Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys. Acta Mater. 227, 117693 (2022)

    Article  CAS  Google Scholar 

  110. Y.C. Huang, C.H. Su, S.K. Wu, C. Lin, A study on the Hall-Petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy 21(3), 297 (2019)

    Article  CAS  Google Scholar 

  111. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014)

    Article  CAS  Google Scholar 

  112. P. Thirathipviwat, G. Song, J. Jayaraj, J. Bednarcik, H. Wendrock, T. Gemming, J. Freudenberger, K. Nielsch, J. Han, A comparison study of dislocation density, recrystallization and grain growth among nickel, FeNiCo ternary alloy and FeNiCoCrMn high entropy alloy. J. Alloys Compd. 790, 266–273 (2019)

    Article  CAS  Google Scholar 

  113. D. Xu, M. Wang, T. Li, X. Wei, Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures 2(1), 2022001 (2022)

    CAS  Google Scholar 

  114. K.A. Christofidou, E.J. Pickering, P. Orsatti, P.M. Mignanelli, T.J.A. Slater, H.J. Stone, N.G. Jones, On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 92, 84–92 (2018)

    Article  CAS  Google Scholar 

  115. G. Bracq, M. Laurent-Brocq, L. Perrière, R. Pirès, J.M. Joubert, I. Guillot, The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 128, 327–336 (2017)

    Article  CAS  Google Scholar 

  116. N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, G.A. Salishchev, Tensile properties of the Cr–Fe–Ni–Mn non-equiatomic multicomponent alloys with different Cr contents. Mater. Des. 87, 60–65 (2015)

    Article  CAS  Google Scholar 

  117. M. Tian, C. Wu, Y. Liu, H. Peng, J. Wang, X. Su, Phase stability and microhardness of CoCrFeMnxNi2-x high entropy alloys. J. Alloys Compd. 811, 152025 (2019)

    Article  CAS  Google Scholar 

  118. S. Praveen, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 134, 426–433 (2017)

    Article  Google Scholar 

  119. S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361–367 (2016)

    Article  CAS  Google Scholar 

  120. M. Tekin, G. Polat, Y.E. Kalay, H. Kotan, Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y2O3 high entropy alloys synthesized by mechanical alloying. J. Alloys Compd. 887, 161363 (2021)

    Article  CAS  Google Scholar 

  121. B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Strengthening of Al0. 3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scr. Mater. 162, 477–481 (2019)

    Article  CAS  Google Scholar 

  122. B. Jia, X. Liu, H. Wang, Y. Wu, Z. Lu, Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Sci. China Technol. Sci. 61(2), 179–183 (2018)

    Article  CAS  Google Scholar 

  123. Y.K. Kim, J.E. Ahn, Y. Song, H. Choi, S. Yang, K.A. Lee, Selective laser melted CrMnFeCoNi+ 3 wt% Y2O3 high-entropy alloy matrix nanocomposite: fabrication, microstructure and nanoindentation properties. Intermetallics 138, 107319 (2021)

    Article  CAS  Google Scholar 

  124. N. Zhou, T. Hu, J. Huang, J. Luo, Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160–163 (2016)

    Article  CAS  Google Scholar 

  125. N. Zhou, T. Hu, J. Luo, Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 20(5), 268–277 (2016)

    Article  CAS  Google Scholar 

  126. P. Lejček, S. Hofmann, M. Všianská, M. Šob, Entropy matters in grain boundary segregation. Acta Mater. 206, 116597 (2021)

    Article  Google Scholar 

  127. X. Liang, Q. Wu, H. Li, R. Wang, L. Kang, B. Liu, L. Wang, Static recrystallization and texture evolution of cold-rolled powder metallurgy CoCrFeNiN0.07 high-entropy alloy. J. Alloys Compd. 862, 158602 (2021)

    Article  CAS  Google Scholar 

  128. M.H. Mohammad-Ebrahimi, A. Zarei-Hanzaki, H.R. Abedi, S.M. Vakili, C.K. Soundararajan, Decelerated grain growth kinetic and effectiveness of Hall-Petch relationship in a cold-rolled non-equiatomic high entropy alloy. J. Alloys Compd. 874, 159849 (2021)

    Article  CAS  Google Scholar 

  129. M. Soleimani, A. Kalhor, H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater. Sci. Eng. A 795, 140023 (2020)

    Article  CAS  Google Scholar 

  130. M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh, Deformation-induced martensite in austenitic stainless steels: a review. Arch. Civil Mech. Eng. 20(4), 1–24 (2020)

    Article  Google Scholar 

  131. J.M. Park, P. Asghari-Rad, A. Zargaran, J.W. Bae, J. Moon, H. Kwon, J. Choe, S. Yang, J.H. Yu, H.S. Kim, Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta Mater. 221, 117426 (2021)

    Article  CAS  Google Scholar 

  132. K. Zhang, X. Zhang, E. Zhang, R. Wei, L. Wang, J. Chen, S. Yuan, Z. Han, C. Chen, F. Li, Strengthening of ferrous medium entropy alloys by promoting phase transformation. Intermetallics 136, 107265 (2021)

    Article  CAS  Google Scholar 

  133. P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae, H.S. Kim, Fine tuning of tensile properties in CrCoNi medium entropy alloy through cold rolling and annealing. Intermetallics 113, 106578 (2019)

    Article  CAS  Google Scholar 

  134. G.D. Sathiaraj, W. Skrotzki, A. Pukenas, R. Schaarschuch, R.J. Immanuel, S.K. Panigrahi, J.A. Chelvane, S.S. Kumar, Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy. Intermetallics 101, 87–98 (2018)

    Article  Google Scholar 

  135. G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George, Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection. J. Mater. Sci. Technol. 54, 196–205 (2020)

    Article  CAS  Google Scholar 

  136. R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J. Alloys Compd. 790, 732–743 (2019)

    Article  CAS  Google Scholar 

  137. G.W. Hu, L.C. Zeng, H. Du, Q. Wang, Z.T. Fan, X.W. Liu, Combined effects of solute drag and Zener pinning on grain growth of a NiCoCr medium-entropy alloy. Intermetallics 136, 107271 (2021)

    Article  CAS  Google Scholar 

  138. E.A. Brandes, G.B. Brook (eds.), Smithells metals reference book (Elsevier, Burlington, 2013)

    Google Scholar 

  139. N. Li, J. Gu, B. Gan, Q. Qiao, S. Ni, M. Song, Effects of Mo-doping on the microstructure and mechanical properties of CoCrNi medium entropy alloy. J. Mater. Res. 35(20), 2726–2736 (2020)

    Article  CAS  Google Scholar 

  140. J.W. Cahn, The impurity-drag effect in grain boundary motion. Acta Metall. 10(9), 789–798 (1962)

    Article  CAS  Google Scholar 

  141. M. Naghizadeh, H. Mirzadeh, Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall. Mater. Trans. A 47(12), 5698–5703 (2016)

    Article  CAS  Google Scholar 

  142. H.M. Tawancy, On the tensile strength of medium entropy Fe30Ni30Cr20Co17Mo2W1 alloy with high microstructural stability. Mater. Sci. Eng. A 781, 139239 (2020)

    Article  CAS  Google Scholar 

  143. R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, F. Yin, Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: experiments and first-principle calculations. J. Mater. Sci. Technol. 62, 25–33 (2021)

    Article  CAS  Google Scholar 

  144. J. He, S.K. Makineni, W. Lu, Y. Shang, Z. Lu, Z. Li, B. Gault, On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scr. Mater. 175, 1–6 (2020)

    Article  CAS  Google Scholar 

  145. C. Zhang, B. Liu, Y. Liu, Q. Fang, W. Guo, H. Yang, Effects of annealing on microstructure and mechanical properties of metastable powder metallurgy CoCrFeNiMo0.2 high entropy alloy. Entropy 21(5), 448 (2019)

    Article  CAS  Google Scholar 

  146. J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, H.S. Kim, Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys. J. Alloys Compd. 781, 75–83 (2019)

    Article  CAS  Google Scholar 

  147. D.E. Jodi, J. Park, N. Park, Precipitate behavior in nitrogen-containing CoCrNi medium-entropy alloys. Mater. Charact. 157, 109888 (2019)

    Article  CAS  Google Scholar 

  148. P.C. Zhao, B. Guan, Y.G. Tong, R.Z. Wang, X. Li, X.C. Zhang, S.T. Tu, A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure. J. Mater. Sci. Technol. 109, 54–63 (2022)

    Article  CAS  Google Scholar 

  149. B. Zhang, J. Chen, P. Wang, B. Sun, Y. Cao, Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique. J. Mater. Sci. Technol. 111, 111–119 (2022)

    Article  CAS  Google Scholar 

  150. H.T. Jeong, W.J. Kim, Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy. J. Mater. Sci. Technol. 42, 190–202 (2020)

    Article  CAS  Google Scholar 

  151. B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0. 1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J. Alloys Compd. 767, 1012–1021 (2018)

    Article  CAS  Google Scholar 

  152. L. Li, J. Lu, X. Liu, T. Dong, X. Zhao, F. Yang, F. Guo, AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4+ 25% NaCl at 900° C. Corros. Sci. 187, 109479 (2021)

    Article  CAS  Google Scholar 

  153. Z.Y. Ding, B.X. Cao, J.H. Luan, Z.B. Jiao, Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys. Corros. Sci. 184, 109365 (2021)

    Article  CAS  Google Scholar 

  154. R. Gawel, Ł Rogal, J. Dąbek, M. Wójcik-Bania, K. Przybylski, High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys. Vacuum 184, 109969 (2021)

    Article  CAS  Google Scholar 

  155. Z. Li, L. Fu, J. Peng, H. Zheng, A. Shan, Effect of annealing on microstructure and mechanical properties of an ultrafine-structured Al-containing FeCoCrNiMn high-entropy alloy produced by severe cold rolling. Mater. Sci. Eng. A 786, 139446 (2020)

    Article  CAS  Google Scholar 

  156. M.M. Garlapati, M. Vaidya, A. Karati, S. Mishra, R. Bhattacharya, B.S. Murty, Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Adv. Powder Technol. 31(5), 1985–1993 (2020)

    Article  CAS  Google Scholar 

  157. Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 204, 116505 (2021)

    Article  CAS  Google Scholar 

  158. D. Hachet, S. Gorsse, S. Godet, Microstructure study of cold rolled Al0 32CoCrFeMnNi high-entropy alloy: interactions between recrystallization and precipitation. Mater. Sci. Eng. A 802, 140452 (2021)

    Article  CAS  Google Scholar 

  159. J.M. Park, J. Moon, J.W. Bae, J. Jung, S. Lee, H.S. Kim, Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 728, 251–258 (2018)

    Article  CAS  Google Scholar 

  160. N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, D.M. Ikornikov, V.N. Sanin, S.V. Zherebtsov, Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Mater. Sci. Eng. A 728, 54–62 (2018)

    Article  CAS  Google Scholar 

  161. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 131, 206–220 (2017)

    Article  CAS  Google Scholar 

  162. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 121, 254–260 (2017)

    Article  CAS  Google Scholar 

  163. T. Guo, J. Li, J. Wang, W.Y. Wang, Y. Liu, X. Luo, H. Kou, E. Beaugnon, Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater. Sci. Eng. A 729, 141–148 (2018)

    Article  CAS  Google Scholar 

  164. I.S. Wani, G.D. Sathiaraj, M.Z. Ahmed, S.R. Reddy, P.P. Bhattacharjee, Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0. 5CoCrFeMnNi high entropy alloy. Mater. Charact. 118, 417–424 (2016)

    Article  CAS  Google Scholar 

  165. H.Y. Yasuda, H. Miyamoto, K. Cho, T. Nagase, Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates. Mater. Lett. 199, 120–123 (2017)

    Article  CAS  Google Scholar 

  166. Z. Zhang, Y.H. Xie, X.Y. Huo, S.L.I. Chan, J.M. Liang, Y.F. Luo, D.K.Q. Mu, J. Ju, J. Sun, J. Wang, Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O3 nanoparticles. Mater. Sci. Eng. A 816, 141313 (2021)

    Article  CAS  Google Scholar 

  167. J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys. Mater. Design 180, 107910 (2019)

    Article  CAS  Google Scholar 

  168. C. Zener, Grains, phases and interfaces: an interpretation of microstructure. Trans. AIME 175, 15–51 (1948)

    Google Scholar 

  169. P. Hellman, M. Hillert, On the effect of second-phase particles on grain growth. Scand. J. Metall. 4, 211–219 (1975)

    CAS  Google Scholar 

  170. L. Anand, J. Gurland, The relationship between the size of cementite particles and the subgrain size in quenched-and-tempered steels. Metall. Trans. A 6(4), 928–931 (1975)

    Article  Google Scholar 

  171. H. Kim, D. Lee, H. Kim, Y. Kim, M. Jang, D. Kwen, Y. Koo, E. Kim, H. Cho, M.P. Agustianingrum, N. Park, The formation of B2-precipitate and its effect on grain growth behavior in aluminum-containing CoCrNi medium-entropy alloy. Mater. Lett. 303, 130481 (2021)

    Article  CAS  Google Scholar 

  172. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Static recrystallization and grain growth behaviour of Al0. 3CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 754, 282–294 (2019)

    Article  CAS  Google Scholar 

  173. S. Dudala, S.C. Krishna, R. Korla, Microstructural evolution and grain-growth kinetics of Al0 2CoCrFeNi high-entropy alloy. Philos. Mag. Lett. 101(11), 444–454 (2021)

    Article  CAS  Google Scholar 

  174. C.S. Wu, P.H. Tsai, C.M. Kuo, C.W. Tsai, Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys. Entropy 20(12), 967 (2018)

    Article  CAS  Google Scholar 

  175. M. Wang, Z.L. Ma, Z.Q. Xu, X.W. Cheng, Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr. Mater. 191, 131–136 (2021)

    Article  CAS  Google Scholar 

  176. R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Mater. Charact. 136, 286–292 (2018)

    Article  CAS  Google Scholar 

  177. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18(9), 1758–1765 (2010)

    Article  CAS  Google Scholar 

  178. Z.K. Dehkordi, M. Malekan, M. Nili-Ahmadabadi, Superplastic formability of the developed Zr40Hf10Ti5Al10Cu25Ni10 high entropy bulk metallic glass with enhanced thermal stability. J. Non-Cryst. Solids 576, 121265 (2022)

    Article  CAS  Google Scholar 

  179. A. Jalali, M. Malekan, E.S. Park, R. Rashidi, A. Bahmani, G.H. Yoo, Thermal behavior of newly developed Zr33Hf8Ti6Cu32Ni10Co5Al6 high-entropy bulk metallic glass. J. Alloys Compd. 892, 162220 (2022)

    Article  CAS  Google Scholar 

  180. A. Jalali, M. Malekan, E.S. Park, R. Rashidi, A. Bahmani, G.H. Yoo, Deformation behavior of Zr33Hf8Ti6Cu32Ni10Co5Al6 high-entropy bulk metallic glass and Cu47Zr47Al6 low-entropy bulk metallic glass at room and high temperatures. Mater. Sci. Eng. A 832, 142499 (2022)

    Article  CAS  Google Scholar 

  181. C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 184, 200–203 (2016)

    Article  CAS  Google Scholar 

  182. S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 795, 19–26 (2019)

    Article  CAS  Google Scholar 

  183. G. Neumann, C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data (Elsevier, 2011)

    Google Scholar 

  184. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, C. Yu, Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential. Mater. Des. 202, 109560 (2021)

    Article  CAS  Google Scholar 

  185. Y.C. Huang, Y.C. Lai, Y.H. Lin, S.K. Wu, A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy. J. Alloys Compd. 855, 157404 (2021)

    Article  CAS  Google Scholar 

  186. O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall. Mater. Trans. A 49(7), 2876–2892 (2018)

    Article  CAS  Google Scholar 

  187. L. Xiang, W. Guo, B. Liu, A. Fu, J. Li, Q. Fang, Y. Liu, Microstructure and mechanical properties of TaNbVTiAlx refractory high-entropy alloys. Entropy 22(3), 282 (2020)

    Article  CAS  Google Scholar 

  188. B. Guo, R.K. Ray, S. Yoshida, Y. Bai, N. Tsuji, In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scr. Mater. 215, 114706 (2022)

    Article  CAS  Google Scholar 

  189. F. Najafkhani, H. Mirzadeh, M. Zamani, Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel. Met. Mater. Int. 25(4), 1039–1046 (2019)

    Article  CAS  Google Scholar 

  190. M. Naghizadeh, H. Mirzadeh, Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall. Mater. Trans. A 49(6), 2248–2256 (2018)

    Article  CAS  Google Scholar 

  191. Y. Liu, G. He, Y. Yang, K. Li, H. Gong, B. Gan, C. Huang, Revealing the microstructural evolution and mechanism during the thermomechanical treatment of polycrystalline CrCoNi medium-entropy alloy. J. Alloys Compd. 870, 159518 (2021)

    Article  CAS  Google Scholar 

  192. M. Naghizadeh, H. Mirzadeh, Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall. Mater. Trans. A 47(8), 4210–4216 (2016)

    Article  CAS  Google Scholar 

  193. M.J. Sohrabi, H. Mirzadeh, C. Dehghanian, Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. J. Mater. Eng. Perform. 29(5), 3233–3242 (2020)

    Article  CAS  Google Scholar 

  194. S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater. Sci. Eng. A 759, 90–96 (2019)

    Article  CAS  Google Scholar 

  195. S. Schmidt, G.D. Sathiaraj, S.S. Kumar, B. Sulkowski, S. Suwas, J. Jaschinski, A. Pukenas, B. Gu, W. Skrotzki, Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy. Mater. Chem. Phys. 270, 124830 (2021)

    Article  CAS  Google Scholar 

  196. Y. Wu, J. Liu, L. Bhatta, C. Kong, H. Yu, Study of texture analysis on asymmetric cryorolled and annealed CoCrNi medium entropy alloy. Curr. Comput.-Aided Drug Des. 10(12), 1154 (2020)

    CAS  Google Scholar 

  197. H. Thota, R. Jeyaraam, L.R. Bairi, A.S. Tirunilai, A. Kauffmann, J. Freudenberger, M. Heilmaier, S. Mandal, S.S. Vadlamani, Grain boundary engineering and its implications on corrosion behavior of equiatomic CoCrFeMnNi high entropy alloy. J. Alloys Compd. 888, 161500 (2021)

    Article  CAS  Google Scholar 

  198. M. Liu, S. Zhang, F. Li, Y. Luo, Y. Yao, H. Zhang, Z. Wang, L. Wang, Z. Wang, Tailoring the strength and ductility of Al0.25CoCrFeNi high entropy alloy through cryo-rolling and annealing. Mater. Sci. Eng. A 826, 141964 (2021)

    Article  CAS  Google Scholar 

  199. J. Wang, H. Li, H. Yang, Y. Zhang, W.Y. Wang, J. Li, Hot deformation and subsequent annealing on the microstructure and hardness of an Al0.3CoCrFeNi high-entropy alloy. Acta Metall. Sin. (English Letters) 34(11), 1527–1536 (2021)

    Article  CAS  Google Scholar 

  200. S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas, Modern HSLA steels and role of non-recrystallisation temperature. Int. Mater. Rev. 57(4), 187–207 (2012)

    Article  CAS  Google Scholar 

  201. H. Chen, T. Lu, Y. Wang, Y. Liu, T. Shi, K.G. Prashanth, K. Kosiba, Laser additive manufacturing of nano-TiC particles reinforced CoCrFeMnNi high-entropy alloy matrix composites with high strength and ductility. Mater. Sci. Eng. A 833, 142512 (2021)

    Article  Google Scholar 

  202. Y.L. Wang, L. Zhao, D. Wan, S. Guan, K.C. Chan, Additive manufacturing of TiB2-containing CoCrFeMnNi high-entropy alloy matrix composites with high density and enhanced mechanical properties. Mater. Sci. Eng. A 825, 141871 (2021)

    Article  CAS  Google Scholar 

  203. J. Li, S. Xiang, H. Luan, A. Amar, X. Liu, S. Lu, Y. Zeng, G. Le, X. Wang, F. Qu, C. Jiang, Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. J. Mater. Sci. Technol. 35(11), 2430–2434 (2019)

    Article  CAS  Google Scholar 

  204. Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon. Intermetallics 106, 77–87 (2019)

    Article  CAS  Google Scholar 

  205. Y.K. Kim, K.A. Lee, Stabilized sub–grain and nano carbides–driven 1.2 GPa grade ultra–strong CrMnFeCoNi high–entropy alloy additively manufactured by laser powder bed fusion. J. Mater. Sci. Technol. 117, 8–22 (2022)

    Article  CAS  Google Scholar 

  206. M. Traversier, P. Mestre-Rinn, N. Peillon, E. Rigal, X. Boulnat, F. Tancret, J. Dhers, A. Fraczkiewicz, Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA). Mater. Sci. Eng. A 804, 140725 (2021)

    Article  CAS  Google Scholar 

  207. K.S. Chung, P.M. Yiu, T.F. Hung, C.H. Shek, Strengthening and deformation mechanism of a Fe20Co20Cr20Mn20Ni20 high entropy alloy with high nitrogen content. J. Alloys Compd. 871, 159587 (2021)

    Article  CAS  Google Scholar 

  208. X.W. Liu, G. Laplanche, A. Kostka, S.G. Fries, J. Pfetzing-Micklich, G. Liu, E.P. George, Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon. J. Alloys Compd. 775, 1068–1076 (2019)

    Article  CAS  Google Scholar 

  209. H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off. Mater. Des. 197, 109202 (2021)

    Article  CAS  Google Scholar 

  210. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5), 698–706 (2011)

    Article  CAS  Google Scholar 

  211. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563(7732), 546–550 (2018)

    Article  CAS  Google Scholar 

  212. J.A. Smeltzer, B.C. Hornbuckle, A.K. Giri, K.A. Darling, M.P. Harmer, H.M. Chan, C.J. Marvel, Nitrogen-induced hardening of refractory high entropy alloys containing laminar ordered phases. Acta Mater. 211, 116884 (2021)

    Article  CAS  Google Scholar 

  213. Y. Guo, J. He, Z. Li, L. Jia, X. Wu, C. Liu, Strengthening and dynamic recrystallization mediated by Si-alloying in a refractory high entropy alloy. Mater. Sci. Eng. A 832, 142480 (2022)

    Article  CAS  Google Scholar 

  214. S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31(8), 1807142 (2019)

    Article  Google Scholar 

  215. J.M. Park, D.C. Yang, H.J. Kim, D.G. Kim, S. Lee, H.S. Kim, S.S. Sohn, Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening. Mater. Res. Lett. 9(7), 315–321 (2021)

    Article  CAS  Google Scholar 

  216. G.D. Sathiaraj, M.Z. Ahmed, P.P. Bhattacharjee, Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J. Alloys Compd. 664, 109–119 (2016)

    Article  CAS  Google Scholar 

  217. H. Ma, Y. Shao, C.H. Shek, Microstructure, grain growth behavior and mechanical properties of W-CoCuFeNi tungsten heavy alloys prepared by infiltration. Int. J. Refract Metal Hard Mater. 98, 105572 (2021)

    Article  CAS  Google Scholar 

  218. R. Jian, L. Wang, S. Zhou, Y. Zhu, Y.J. Liang, B. Wang, Y. Xue, Achieving fine-grain tungsten heavy alloys by selecting a high entropy alloy matrix with low W grain growth rate. Mater. Lett. 278, 128405 (2020)

    Article  CAS  Google Scholar 

  219. C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, J.L.H. Chau, Novel cermet material of WC/multi-element alloy. Int. J. Refract Metal Hard Mater. 43, 200–204 (2014)

    Article  CAS  Google Scholar 

  220. P.F. Zhou, D.H. Xiao, T.C. Yuan, Comparison between ultrafine-grained WC–Co and WC–HEA-cemented carbides. Powder Metall. 60(1), 1–6 (2017)

    Article  Google Scholar 

  221. Y. Shao, Z. Guo, Y. Wang, H. Ma, Fabrication and characterization of NbC-CoCrFeNiMn high-entropy alloy cermets. Int. J. Refract Metal Hard Mater. 94, 105388 (2021)

    Article  CAS  Google Scholar 

  222. W. Luo, Y. Liu, J. Shen, Effects of binders on the microstructures and mechanical properties of ultrafine WC-10% AlxCoCrCuFeNi composites by spark plasma sintering. J. Alloys Compd. 791, 540–549 (2019)

    Article  CAS  Google Scholar 

  223. S. Zhou, Y.J. Liang, Y. Zhu, B. Wang, L. Wang, Y. Xue, Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing. J. Mater. Sci. Technol. 90, 30–36 (2021)

    Article  CAS  Google Scholar 

  224. P.K. Huang, J.W. Yeh, Inhibition of grain coarsening up to 1000 C in (AlCrNbSiTiV) N superhard coatings. Scr. Mater. 62(2), 105–108 (2010)

    Article  CAS  Google Scholar 

  225. J.J. Ruan, N. Ueshima, K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718. J. Alloys Compd. 737, 83–91 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jien-Wei Yeh acknowledges the financial support by the “High Entropy Materials Center” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education and from the Project MOST 111-2634-F-007-008 by Ministry of Science and Technology in Taiwan. Mohammad Reza Zamani and Hamed Mirzadeh would like to greatly thank the members of the Advanced Steels and Thermomechanically Processed Engineering Materials Laboratory for their help and support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript has been prepared by the contribution of all authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M.R., Mirzadeh, H., Malekan, M. et al. Grain Growth in High-Entropy Alloys (HEAs): A Review. High Entropy Alloys & Materials 1, 25–59 (2023). https://doi.org/10.1007/s44210-022-00002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44210-022-00002-8

Keywords

Navigation