Skip to main content

Advertisement

Log in

Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) Ti3C2 material has a wide range of photovoltaic applications due to its unique electronic, optical, and plasmonic properties. Herein, we present a series of Ti3C2 (0, 0.6, 0.8; wt%) nanosheets-modified P25 nanoparticles as photoanode films for dye-sensitized solar cells (DSSCs). The DSSC based on P25 and 0.6 wt% Ti3C2 photoanode achieves a fairly good efficiency (9.22%), which greatly exceeds the counterpart based on the pure P25 (7.16%). Benefiting from high light scattering and metallic electrical conductivity of Ti3C2 additive, the P25/Ti3C2-based DSSC exhibits a superior behavior of controlling photogenerated charge recombination compared with pure P25 one.

Graphical abstract

摘要

二维Ti3C2材料由于其独特的电子、光学和等离子体性能, 广泛应用太阳能光伏上。本研究展示了一系列Ti3C2(0, 0.6, 0.8; wt%) 纳米片修饰P25纳米颗粒光阳极, 并应用到染料敏化太阳能电池 (DSSCs) 。基于P25和0.6 wt% Ti3C2光电阳极的DSSC具有较好的光电转换效率 (9.22%), 超过纯P25的DSSC的效率 (7.16%) 。与纯P25的DSSC相比, 基于P25/Ti3C2的DSSC具有更好的抑制光生电荷复合, 这一结果得益于添加剂 (Ti3C2) 的优越的光散射和金属电导性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737.

    Article  CAS  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev. 2010;110(11):6595.

    Article  CAS  Google Scholar 

  3. Wu K, Zhao J, Xiong Y, Ruan B, Wu M. Synthesis of La2MoO6@MWCNTs composite catalysts as Pt-free counter electrodes for dye-sensitized solar cell. J Rare Earths. 2018;36(12):1278.

    Article  CAS  Google Scholar 

  4. Wu WQ, Xu YF, Su CY, Kuang DB. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ Sci. 2014;7:644.

    Article  CAS  Google Scholar 

  5. Kavan L. Electrochemistry and dye-sensitized solar cells. Curr Opin Electrochem. 2017;2(1):88.

    Article  CAS  Google Scholar 

  6. Hou X, Aitola K, Lund PD. TiO2 nanotubes for dye-sensitized solar cells-a review. Energy Sci Eng. 2020;9(7):921.

    Article  Google Scholar 

  7. Park Y, Lee J, Ha S, Moon JH. 1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells. Nanoscale. 2014;6(6):3105.

    Article  CAS  Google Scholar 

  8. Gu L, Wang J, Cheng H, Zhao Y, Liu L, Han X. One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces. 2013;5(8):3085.

    Article  CAS  Google Scholar 

  9. Wu WQ, Liao JF, Kuang DB. Layered-stacking of titania films for solar energy conversion: toward tailored optical, electronic and photovoltaic performance. J Energy Chem. 2018;27(3):690.

    Article  Google Scholar 

  10. Wang J, Du Z, Hojamberdiev M, Zheng S, Xu Y. Oxalate-assisted morphological effect of NaYF4:Yb3+, Er3+ on photoelectrochemical performance for dye-sensitized solar cells. J Rare Earths. 2018;36(4):353.

    Article  Google Scholar 

  11. Chen J, Li B, Zheng JF, Zhao JG, Zhu ZP. Role of carbon nanotubes in dye-sensitized TiO2-based solar cells. J Phys Chem C. 2012;116(28):14848.

    Article  CAS  Google Scholar 

  12. Dhonde M, Sahu K, Murty V. Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol Energy. 2021;220(1):418.

    Article  CAS  Google Scholar 

  13. Kazmi SA, Hameed S, Ahmed AS, Arshad M, Azam A. Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). J Alloys Compd. 2017;691:659.

    Article  CAS  Google Scholar 

  14. Low FW, Lai CW, Mun LK, Juan JC. Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitized solar cells. Rare Met. 2018;37(4):919.

    Article  CAS  Google Scholar 

  15. Yang NL, Zhai J, Wang D, Chen Y, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano. 2010;4(2):887.

    Article  CAS  Google Scholar 

  16. Menon H, Gopakumar G, Vijayaraghavan SN, Nair SV, Shanmugam M. 2D layered MoS2 incorporated TiO2 nanofiber based dye sensitized solar cells. ChemistrySelect. 2018;3(21):5688.

    Article  Google Scholar 

  17. Ren CE, Zhao MQ, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum MW, Gogotsi Y. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem. 2016;3:689.

    Article  CAS  Google Scholar 

  18. Li L, Zhang M, Zhang X, Zhang Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J Power Sources. 2017;364:234.

    Article  CAS  Google Scholar 

  19. Pang J, Mendes RG, Bachmatiuk A, Zhao L. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev. 2019;48(1):72.

    Article  CAS  Google Scholar 

  20. Wang F, Yang CH, Duan M, Tang Y, Zhu JF. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron. 2015;74:1022.

    Article  CAS  Google Scholar 

  21. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459.

    Article  CAS  Google Scholar 

  22. Iqbal A, Sambyal P, Koo CM. 2D MXenes for electromagnetic shielding: a review. Adv Funct Mater. 2020;30(47):2000883.

    Article  CAS  Google Scholar 

  23. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano. 2018;12(11):11193.

    Article  CAS  Google Scholar 

  24. Xiu LY, Wang ZY, Qiu JS. General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Met. 2020;39(11):1237.

    Article  CAS  Google Scholar 

  25. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces. 2016;8:6051.

    Article  CAS  Google Scholar 

  26. Fu HC, Ramalingam V, Kim H, Lin CH. MXene-contacted silicon solar cells with 11.5% efficiency. Adv Energy Mater. 2019;9(12):1900180.

    Article  Google Scholar 

  27. Yu Z, Feng W, Lu W, Li B, Yao H, Zeng K, Ouyang J. MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J Mater Chem A. 2019;7(18):11160.

    Article  CAS  Google Scholar 

  28. Yang L, Dall’Agnese Y, Hantanasirisakul K, Shuck CE, Maleski K, Alhabeb M, Chen G, Gao Y, Sanehira Y, Jena AK, Shen L, Dall’Agnese C, Wang XF, Gogotsi Y, Miyasaka T. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J Mater Chem A. 2019;7(10):5635.

    Article  CAS  Google Scholar 

  29. Huang L, Zhou X, Xue R, Xu P, Wang S, Xu C, Zeng W, Xiong Y, Sang H, Liang D. Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 2020;12:44.

    Article  CAS  Google Scholar 

  30. Wu YH, Yuan KY, He YE, Wu H, Ma LJ, Wang G, Qiao XD, Lei BX, Sun ZF, Liu ZQ. A topotactic tailored synthesis of waxberry-like mixed-phase TiO2 hollow spheres for dye-sensitized solar cells. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.07.032.

    Article  Google Scholar 

  31. Usami A, Seki S, Mita Y, Kobayashi H, Miyashiro H, Terada N. Temperature dependence of open-circuit voltage in dye-sensitized solar cells. Sol Energy Mater Sol Cells. 2009;93(6):840.

    Article  CAS  Google Scholar 

  32. Zaban A, Greenshtei M, Bisquert J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem. 2003;4(8):859.

    Article  CAS  Google Scholar 

  33. Wu YH, Lu YN, Ma LJ, Chen H, Wang YX, Wu WQ, Lei BX, Sun ZF. Green fluorine-free synthesis of hollow rectangular prism-like TiO2 mesocrystals with exposed 001 facets for high-performance dye-sensitized solar cells. J Phys Chem C. 2021;125(3):1684.

    Article  CAS  Google Scholar 

  34. Peter LM, Duffy NW, Wang RL, Wijayantha KGU. Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. J Electroanal Chem. 2002;524:127.

    Article  Google Scholar 

  35. Wang YF, Feng H, Deng YR, Xin FF, Li DJ, Hu ZF, Zhang L, Liu RP. Solvothermal growth of Zn2SnO4 for efficient dye-sensitized solar cells. Rare Met. 2022;41(3):942.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21965013) and the Natural Science Foundation of Hainan Province (Nos. 220RC590 and 521QN239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-Xin Lei, Heng Wu or Zhao-Qing Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Ma, LJ., Lei, BX. et al. Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells. Rare Met. 41, 3078–3085 (2022). https://doi.org/10.1007/s12598-022-02018-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02018-w

Keywords

Navigation